Different Kinds of Quantum Computing Measurement Operators

Click For Summary
SUMMARY

This discussion focuses on the three types of measurement operators in quantum mechanics: General, Projective, and Positive Operator-Valued Measure (POVM). Each type has distinct properties, such as completeness and hermitian characteristics, which are crucial for precise control in quantum computing. The discussion includes a detailed comparison table outlining the basic symbols, special properties, probabilities, and state changes after measurement for each operator type. Understanding these differences is essential for anyone working in quantum computing.

PREREQUISITES
  • Quantum Mechanics fundamentals
  • Measurement theory in quantum systems
  • Linear algebra concepts related to operators
  • Familiarity with quantum computing frameworks
NEXT STEPS
  • Study the mathematical foundations of Quantum Mechanics
  • Explore the implications of Projective measurements in quantum algorithms
  • Learn about the applications of POVM in quantum information theory
  • Investigate the role of measurement operators in quantum error correction
USEFUL FOR

Quantum physicists, quantum computing researchers, and students seeking to deepen their understanding of measurement operators in quantum mechanics.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
So in quantum mechanics, there are at least three different kinds of measurement operators: the General, the Projective, and the Positive Operator-Valued (POVM). They have different properties and relationships. In a typical QM book, these are not delineated, but in Quantum Computing they are, since we want to have much more fine control over measurements. So here is a table comparing the three different kinds of measurement operators.

$$
\begin{array}{|c|c|c|c|}\hline
\textbf{Type} &\text{General} &\text{Projective} &\text{POVM} \\ \hline
\textbf{Basic Symbol} &\text{Measurement Op} \; M_m &\text{Observable} \; M=\sum_m m P_m &\text{Measurement Op} \; M_m \\ \hline
\textbf{Special Property} & &P_m \; \text{a projector:} \; P_m^2=P_m &\text{POVM element} \; E_m:=M_m^{\dagger}M_m \\ \hline
\textbf{Probability} &p(m)=\langle\psi|M_m^{\dagger}M_m|\psi\rangle &p(m)=\langle\psi|P_m|\psi\rangle &p(m)=\langle\psi|E_m|\psi\rangle \\ \hline
\textbf{State After Measurement} &\dfrac{M_m|\psi\rangle}{\sqrt{\langle\psi|M_m^{\dagger}M_m|\psi\rangle}}
&\dfrac{P_m|\psi\rangle}{\sqrt{\langle\psi|P_m|\psi\rangle}} &\text{not of interest} \\ \hline
\textbf{Completeness} &\sum_mM_m^{\dagger}M_m=I &\sum_m P_m=I &\sum_m E_m=I \\ \hline
\textbf{Hermitian} &M_{m}^{\dagger}=M_m &P_{m}^{\dagger}=P_m &E_{m}^{\dagger}=E_m \\ \hline
\textbf{Other Special} & &E(M)=\langle\psi|M|\psi\rangle &\text{If} \; M_m^2=M_m \; \text{then} \; M_m=P_m \\ \hline
& &M_mM_{m'}=\delta_{m,m'}I &\text{Otherwise,} \; M_m=\sqrt{E_m} \\ \hline
\end{array}
$$
Also note that, by definition, in the POVM case, $\{E_m\}$ is the POVM.
 
Last edited by a moderator:
Physics news on Phys.org

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
12K
  • · Replies 1 ·
Replies
1
Views
1K