murshid_islam
- 468
- 21
- Homework Statement
- Solve dy/dx = (y^2 - 1)/(x^2 - 1), y(2) = 2
- Relevant Equations
- dy/dx = (y^2 - 1)/(x^2 - 1), y(2) = 2
This is my attempt:
\frac{dy}{dx} = \frac{y^2 - 1}{x^2 - 1}<br /> \\ \int \frac{dy}{y^2 - 1} = \int \frac{dx}{x^2 - 1}<br /> \\ \ln \left| \frac{y-1}{y+1} \right| + C_1 = \ln \left| \frac{x-1}{x+1} \right| + C_2<br /> \\ \ln \left| \frac{y-1}{y+1} \right| = \ln \left| \frac{x-1}{x+1} \right| + C
Since y(2) = 2,
\ln \left| \frac{1}{3} \right| = \ln \left| \frac{1}{3} \right| + C<br /> \\ \therefore C = 0
So,
\ln \left| \frac{y-1}{y+1} \right| = \ln \left| \frac{x-1}{x+1} \right|<br /> \\ \left| \frac{y-1}{y+1} \right| = \left| \frac{x-1}{x+1} \right|<br /> \\ \frac{y-1}{y+1} = \pm \frac{x-1}{x+1}<br /> \\y = x, y = \frac{1}{x}
Is this ok, or did I make any mistake?
\frac{dy}{dx} = \frac{y^2 - 1}{x^2 - 1}<br /> \\ \int \frac{dy}{y^2 - 1} = \int \frac{dx}{x^2 - 1}<br /> \\ \ln \left| \frac{y-1}{y+1} \right| + C_1 = \ln \left| \frac{x-1}{x+1} \right| + C_2<br /> \\ \ln \left| \frac{y-1}{y+1} \right| = \ln \left| \frac{x-1}{x+1} \right| + C
Since y(2) = 2,
\ln \left| \frac{1}{3} \right| = \ln \left| \frac{1}{3} \right| + C<br /> \\ \therefore C = 0
So,
\ln \left| \frac{y-1}{y+1} \right| = \ln \left| \frac{x-1}{x+1} \right|<br /> \\ \left| \frac{y-1}{y+1} \right| = \left| \frac{x-1}{x+1} \right|<br /> \\ \frac{y-1}{y+1} = \pm \frac{x-1}{x+1}<br /> \\y = x, y = \frac{1}{x}
Is this ok, or did I make any mistake?
Last edited by a moderator:
