Differential equations - linear dependency

Click For Summary
The discussion focuses on determining the linear dependency and independence of the functions y1(t) = t^2 and y2(t) = t|t| over specified intervals. It is established that y1 and y2 are linearly dependent on the interval 0 ≤ t ≤ 1 because they are equivalent (y2 simplifies to y1 in this range). Conversely, they are linearly independent on the interval -1 ≤ t ≤ 1, as their Wronskian does not equal zero in this case. The Wronskian is found to be identically zero, confirming their linear dependency. The concept of "identically zero" is clarified as meaning the Wronskian equals zero for all values of t.
braindead101
Messages
158
Reaction score
0
Let y1(t) = t^2 and y2(t) = t|t|
(a) Show that y1 and y2 are linearly dependent on the interval 0<=t<=1.
(b) Show that y1 and y2 are linearly independent on the interval -1<=t<=1.
(c) Show that the Wronskian W[y1,y2] is identically zero.



My attempt:
(a) So I know that if the Wronskian is zero, then y1 and y2 are linearly dependent. So i worked out the wronskian and i got
w[y1,y2](t) = t^3 - t^2|t|
I'm not sure how to show that it is linearly dependent on the interval. should i substitute in the intervals 0 and 1 and find that they are equal to zero? what about everything inbetween 0 and 1?

(b) So for linearly independence, wronskian doesn't equal zero, again i have the same question of whether i substitute in the interval, and what do i do with the numbers inbetween, i am unsure how to prove this.

(c) i have no idea what identically zero means, can someone explain this?
 
Physics news on Phys.org
Is that all the information they gave you? Did they give you a differential equation for the solutions?
 
yes, this is all. and i think i have solved (c). i did the wronskian wrong in (a), when i did it again , i got exactly 0, and i guess this is what (c) is asking.

but for (a) and (b), can i just show that for dependence, y1 = k y2, k should exist, and for independence, k should not exist? is that sufficient.
 
If t is non-negative, as it is on [0, 1], then t|t|= t2. The two functions you give are not "independent", they are exactly the same!

"Identically zero" means equal to 0 for all values of t.

but for (a) and (b), can i just show that for dependence, y1 = k y2, k should exist, and for independence, k should not exist? is that sufficient.
For two functions, yes, but for more than two you will need to use the general definition of independence: If
k_1 f_1(x)+ k_2 f_2(x)+ \cdot\cdot\cdot + k_n f_n(x)= 0
for all x with an least one ki not equal to 0, then the functions are dependent.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
7
Views
2K
Replies
19
Views
4K