- #1
Hutchyy
- 4
- 0
#17 If you can't see the picture: Suppose that y1, y2, and y3 are solutions to a third order constant coefficient homogeneous differential equation. Suppose further that for all real t, W(y1,y2)(t)>0, but also W(y1,y2,y3)(0)=0. Then there exists c1 and c2 such that c1y1(t) + c2y2(t) =y3(t) for all real t. Is this true, false or maybe true? I know it must have something to do with abel’s theorem but I can’t really figure out how it applies.. ,
what is the significance of plugging in 0 for ’t’ in the wronskian?
I'm thinking its something that has to do with abel's theorem but I can't make any connections as to how having a positive wronskian relates to a bigger wronskian with 0 plugged into equalling 0. https://www.physicsforums.com/attachments/90663
what is the significance of plugging in 0 for ’t’ in the wronskian?
I'm thinking its something that has to do with abel's theorem but I can't make any connections as to how having a positive wronskian relates to a bigger wronskian with 0 plugged into equalling 0. https://www.physicsforums.com/attachments/90663