[Differential equations] Mixing problem.

Click For Summary
The discussion focuses on solving a differential equation related to a mixing problem involving salt concentration in a tank. The equation derived is ds/dt = CinRin - Cout*S(t)/V(t), with Cin being the input concentration and V(t) representing the tank volume over time. After 300 hours, the concentration stabilizes around 1/5, making the initial concentration less significant. The final calculation shows that the mass of salt in the tank approaches approximately 300 lb. The solution and approach to the differential equation are confirmed to be correct.
Muskyboi
Messages
10
Reaction score
0
Homework Statement
9 gallons/hour entering with a salt concentration of 1/5(1+cos(t)) pounds/gallon (this is a function of time t).

15000 gallon capacity tank with 600 gallons of water with 5 pounds of salt dissolved inside.

6 gallons/hour leaving.

How much salt is the tank just before it overflows?
Relevant Equations
salt concentration= 1/5(1+cos(t)) pounds/gallon (this is a function of time t)
So You Want a Degree in Physics 7-14 screenshot.png

v(t)=600+(9-6)t
=600+3t

1500=600+3t
therefore t=300 hrs when tank is full

Cin=1/5(1 + cost)

ds/dt=Rate in - rate out = CinRin - count*S(t)/V(t)
=1/5(1 + cost)*9 - 6*S(t)/(600+3t)

S(0)=5 ib

Solving the first order linear ODE we get: https://www.desmos.com/calculator/l7iixzgyll

therefore S(300)=279.797 Ib

does my solution look right?
 
Last edited:
Physics news on Phys.org
The differential equation looks right. how did you solve it?

It's a strange problem. After 300 hours the initial concentration is largely irrelevant. The average of the cosine function is 0, so the average concentration entering is ##1/5##. You would expect the final concentration to be close to this. Hence 300lb of salt, approximately.
 
PeroK said:
The differential equation looks right. how did you solve it?

It's a strange problem. After 300 hours the initial concentration is largely irrelevant. The average of the cosine function is 0, so the average concentration entering is ##1/5##. You would expect the final concentration to be close to this. Hence 300lb of salt, approximately.

Yes, dividing the equation for mass of salt in the tank S(t) by the volume of water in the tank V(t) would give the concentration of salt in the tank. Doing so shows that the concentration approaches 1/5 as time increases.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
8
Views
3K
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 14 ·
Replies
14
Views
1K