MHB Differential Equations (particular solutions)

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Differential Equations help: Given Y'' + 16Y = f(x)?
1. If f(x) = 2x^2*e^(3x), give the form of Yp.
2. If f(x) = cos(2x) ,give the form of Yp.
3. If f(x) = 5x*cos(3x), give the form of Yp

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
According to a well known theorem if $$y^{(n)}+a_{n-1}y^{(n-1)}+\ldots+a_1y'+a_0y=f(x)\;(E)$$ with $f(x)=e^{\alpha x}\left(P_k(x)\cos \beta x+Q_r(x)\sin \beta x\right)$, a particular solution of $(E)$ has the form: $$y_p(x)=x^se^{\alpha x}\left(\tilde{P_d}(x)\cos \beta x+\tilde{Q_d}(x)\sin \beta x\right)$$ where $(i)$ $\tilde{P_d},\tilde{Q_d}$ are polynomials of degree $d=\max \left\{{k,r}\right\}$. $(ii)$ $s$ is the order of $\alpha +\beta i$ as a root of the characteristic equation $\lambda^n+a_{n-1}\lambda^{n-1}+\ldots+a_1\lambda+a_0=0$. In our case, $\lambda^2+16=0\Leftrightarrow \alpha+\beta i=\pm4i$. So,

1. If $f(x)=2x^2e^{3x}$, then $y_p(x)=e^{3x}(ax^2+bx+c)$.

2. If $f(x)=\cos 2x$, then $y_p(x)=a\cos 2x+b\sin 2x$.

3. If $f(x)=5x\cos 3x$, then $y_p(x)=(ax+b)\cos \color{red}3x+(cx+d)\sin \color{red}3x$.
 
Last edited:
One may also employ the annihilator method to determine the forms of the particular solutions.

1.) $$f(x)=2x^2e^{3x}$$

If we observe that the differential operator $A$ defined as:

$$A\equiv(D-3)^3$$

annihilates $f(x)$, then we know the particular solution, with the characteristic root $r=3$ of multiplicity 3, must have the form:

$$y_p(x)=c_1e^{3x}+c_2xe^{3x}+c_3x^2e^{3x}=\left(c_1+c_2x+c_3x^2 \right)e^{3x}$$

2.) $$f(x)=\cos(2x)$$

If we observe that the differential operator $A$ defined as:

$$A\equiv D^2+4$$

annihilates $f(x)$, then we know the particular solution, with the characteristic roots $r=\pm2i$, must have the form:

$$y_p(x)=c_1\cos(2x)+c_2\sin(2x)$$

3.) $$f(x)=5x\cos(3x)$$

If we observe that the differential operator $A$ defined as:

$$A\equiv(D^2+9)^2$$

annihilates $f(x)$, then we know the particular solution, with the characteristic roots $r=\pm3i$, both of multiplicity 2, must have the form:

$$y_p(x)=\left(c_1+c_2x \right)\cos(3x)+\left(c_3+c_4x \right)\sin(3x)$$

In all 3 cases, we see that the characteristic roots of the differential operator are different from those of the associated homogeneous equation.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
52
Views
7K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
6
Views
2K
Replies
10
Views
2K
Back
Top