MHB Differential Equations (particular solutions)

AI Thread Summary
The discussion focuses on finding particular solutions for the differential equation Y'' + 16Y = f(x) with various forms of f(x). For f(x) = 2x^2e^(3x), the particular solution is given as y_p(x) = e^(3x)(ax^2 + bx + c). For f(x) = cos(2x), the solution takes the form y_p(x) = a cos(2x) + b sin(2x). Lastly, for f(x) = 5x cos(3x), the solution is y_p(x) = (ax + b) cos(3x) + (cx + d) sin(3x). The discussion emphasizes the importance of the characteristic roots and the annihilator method in determining these particular solutions.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Differential Equations help: Given Y'' + 16Y = f(x)?
1. If f(x) = 2x^2*e^(3x), give the form of Yp.
2. If f(x) = cos(2x) ,give the form of Yp.
3. If f(x) = 5x*cos(3x), give the form of Yp

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
According to a well known theorem if $$y^{(n)}+a_{n-1}y^{(n-1)}+\ldots+a_1y'+a_0y=f(x)\;(E)$$ with $f(x)=e^{\alpha x}\left(P_k(x)\cos \beta x+Q_r(x)\sin \beta x\right)$, a particular solution of $(E)$ has the form: $$y_p(x)=x^se^{\alpha x}\left(\tilde{P_d}(x)\cos \beta x+\tilde{Q_d}(x)\sin \beta x\right)$$ where $(i)$ $\tilde{P_d},\tilde{Q_d}$ are polynomials of degree $d=\max \left\{{k,r}\right\}$. $(ii)$ $s$ is the order of $\alpha +\beta i$ as a root of the characteristic equation $\lambda^n+a_{n-1}\lambda^{n-1}+\ldots+a_1\lambda+a_0=0$. In our case, $\lambda^2+16=0\Leftrightarrow \alpha+\beta i=\pm4i$. So,

1. If $f(x)=2x^2e^{3x}$, then $y_p(x)=e^{3x}(ax^2+bx+c)$.

2. If $f(x)=\cos 2x$, then $y_p(x)=a\cos 2x+b\sin 2x$.

3. If $f(x)=5x\cos 3x$, then $y_p(x)=(ax+b)\cos \color{red}3x+(cx+d)\sin \color{red}3x$.
 
Last edited:
One may also employ the annihilator method to determine the forms of the particular solutions.

1.) $$f(x)=2x^2e^{3x}$$

If we observe that the differential operator $A$ defined as:

$$A\equiv(D-3)^3$$

annihilates $f(x)$, then we know the particular solution, with the characteristic root $r=3$ of multiplicity 3, must have the form:

$$y_p(x)=c_1e^{3x}+c_2xe^{3x}+c_3x^2e^{3x}=\left(c_1+c_2x+c_3x^2 \right)e^{3x}$$

2.) $$f(x)=\cos(2x)$$

If we observe that the differential operator $A$ defined as:

$$A\equiv D^2+4$$

annihilates $f(x)$, then we know the particular solution, with the characteristic roots $r=\pm2i$, must have the form:

$$y_p(x)=c_1\cos(2x)+c_2\sin(2x)$$

3.) $$f(x)=5x\cos(3x)$$

If we observe that the differential operator $A$ defined as:

$$A\equiv(D^2+9)^2$$

annihilates $f(x)$, then we know the particular solution, with the characteristic roots $r=\pm3i$, both of multiplicity 2, must have the form:

$$y_p(x)=\left(c_1+c_2x \right)\cos(3x)+\left(c_3+c_4x \right)\sin(3x)$$

In all 3 cases, we see that the characteristic roots of the differential operator are different from those of the associated homogeneous equation.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
52
Views
7K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
6
Views
2K
Replies
10
Views
2K
Back
Top