lavinia
Science Advisor
- 3,364
- 750
Infrared said:The proof does not consider the degree of a map ##X\to X##, but of a map ##X^4\to X^4##. This makes sense because ##X^4\cong\mathbb{R}^6##. I think @WWGD had a typo of ##X^6## for ##\mathbb{R}^6## in his post.
Not really my point. The underlying intuition was that the iterated mapping ##h^2## on ##X^4## is orientation preserving. So how is ##X^4## orientable in the first place? What does that mean?E.g.if ##X## is a non-orientable manifold then ##X^4## is also non-orientable. For instance the four fold Cartesian product of the real projective plane with itself is not orientable. In fact is ##w_{i}## is the generator of its first ##Z_3## cohomology then the first Stiefel-Whitney class of the four fouldCartesian product is ##w_1+w_2+w_3+w_4##.
BTW: I am curious to see your Kunneth formula proof.