Undergrad Differential k-form vs (0,k) tensor field

Click For Summary
SUMMARY

The discussion clarifies the distinction between differential k-forms and (0,k) tensor fields, particularly in the context of a 2D differential manifold. A differential 2-form is identified as a specific instance of a (0,2) tensor field, characterized by its total antisymmetry and the use of the wedge product. The conversation emphasizes that while the tensor product of two forms does not yield a form, the antisymmetrized version does. Additionally, it highlights the importance of differentiating between k-form fields and k-forms at a specific point in the manifold.

PREREQUISITES
  • Understanding of differential geometry concepts, particularly differential forms.
  • Familiarity with the properties of tensor fields and their operations.
  • Knowledge of the wedge product and its application in multilinear algebra.
  • Basic comprehension of manifolds and tangent spaces.
NEXT STEPS
  • Study the properties of differential forms in the context of differential geometry.
  • Learn about the applications of the wedge product in various mathematical fields.
  • Explore the relationship between k-forms and (0,k) tensor fields in more complex manifolds.
  • Investigate the implications of antisymmetry in multilinear maps and tensor products.
USEFUL FOR

Mathematicians, physicists, and students in advanced geometry or theoretical physics who seek to deepen their understanding of differential forms and tensor analysis.

cianfa72
Messages
2,918
Reaction score
307
TL;DR
Clarification about differential k-form vs (0,k) tensor field
Hi,

I would like to ask for a clarification about the difference between a differential k-form and a generic (0,k) tensor field.

Take for instance a (non simple) differential 2-form defined on a 2D differential manifold with coordinates ##\{x^{\mu}\}##. It can be assigned as linear combination of terms ##dx^{\mu} \wedge dx^{\nu}## and it is basically a multi-linear application from ##V \times V## to ##\mathbb R## (##V## is the tangent vector space at each point of the 2D manifold). So I think a 2-form is actually just a particular (0,2) tensor field defined on the 2D manifold.

Is that right ? Thank you.
 
Last edited:
Physics news on Phys.org
The key aspect is that forms are totally antisymmetric. That's also why we have the wedge product ##\wedge : \Lambda^k(M) \times \Lambda^l(M) \rightarrow \Lambda^{k+l}(M)##, because the tensor product \begin{align*}
R(\mathbf{e}_1, \mathbf{e}_2) \equiv (S \otimes T)(\mathbf{e}_1, \mathbf{e}_2) = S(\mathbf{e}_1) T(\mathbf{e}_2)
\end{align*}of two forms isn't a form. But the antisymmetrised version is:
\begin{align*}
R'(\mathbf{e}_1, \mathbf{e}_2) \equiv (S \wedge T)(\mathbf{e}_1, \mathbf{e}_2) = S(\mathbf{e}_1) T(\mathbf{e}_2) - T(\mathbf{e}_1) S(\mathbf{e}_2)
\end{align*}The generalisation to forms of higher degree is straightforward, viz\begin{align*}
(U \wedge V)(\mathbf{e}_1, \dots, \mathbf{e}_n) = \dfrac{1}{k! l!} \sum_{\sigma} \mathrm{sgn}(\sigma) U(\mathbf{e}_{\sigma(1)}, \dots) V(\mathbf{e}_{\sigma(k+1)}, \dots)
\end{align*}
 
Last edited:
  • Like
Likes WWGD and fresh_42
ergospherical said:
The key aspect is that forms are totally antisymmetric. That's also why we have the wedge product ##\wedge : \Lambda^p(M) \times \Lambda^q(M) \rightarrow \Lambda^{p+q}(M)##, because the tensor product \begin{align*}
R(\mathbf{e}_1, \mathbf{e}_2) \equiv (S \otimes T)(\mathbf{e}_1, \mathbf{e}_2) = S(\mathbf{e}_1) T(\mathbf{e}_2)
\end{align*}of two forms isn't a form. But the antisymmetrised version is:
\begin{align*}
R'(\mathbf{e}_1, \mathbf{e}_2) \equiv (S \wedge T)(\mathbf{e}_1, \mathbf{e}_2) = S(\mathbf{e}_1) T(\mathbf{e}_2) - T(\mathbf{e}_1) S(\mathbf{e}_2)
\end{align*}
I take it as if ##S## and ##T## are two different one-forms -- i.e. two (0,1) tensors defined on manifold-- then their tensor product is not totally antisymmetric.

Instead their antisymmetric version ##S \wedge T## is.

On the other hand the set of k-forms ##\Lambda^k(M)## on the tangent vector space ##T_p(M)## is actually a vector subspace of the tensor product vector space ##\otimes ^ k (M)##.
 
Last edited:
cianfa72 said:
On the other hand the set of k-forms ##\Lambda^k(M)## on the tangent vector space ##T_p(M)## is actually a vector subspace of the tensor product vector space ##\otimes ^ k (M)##.
Careful,
  • ##\Lambda^k M## is the set of ##k##-forms on ##M##
  • ##\Lambda^k_p M \equiv \wedge^k T_p^* M## is the set of ##k##-forms at the point ##p \in M##, and is contained within ##\otimes^k T_p^* M##
And ##\otimes^k M## doesn't mean anything
 
ergospherical said:
Careful,
  • ##\Lambda^k M## is the set of ##k##-forms on ##M##
  • ##\Lambda^k_p M \equiv \wedge^k T_p^* M## is the set of ##k##-forms at the point ##p \in M##, and is contained within ##\otimes^k T_p^* M##
ok, so ##\Lambda^k M## is really the set of ##k##-forms defined at each point of the manifold ##M##, right ?

##\wedge^k T_p^* M## as subset of ##\otimes^k T_p^* M## turns out to be a vector subspace of it.
 
cianfa72 said:
ok, so ##\Lambda^k M## is really the set of ##k##-forms defined at each point of the manifold ##M##, right ?
No. Strictly one should make the distinction between
  • ##k##-form fields ##\Lambda^k M \ni \omega : M \rightarrow \wedge^k T_p^* M##
  • ##k##-forms at the point ##p##, that is, ##\wedge^k T_p^* M \ni \omega_p : \times^k T_p M \rightarrow \mathbf{R}##.
Which is to say that the ##k##-form field ##\omega## is a smooth assignment of ##k##-forms ##\omega_p## to each point in ##p \in M##.
 
Last edited:
ergospherical said:
No. Strictly one should make the distinction between
  • ##k##-form fields ##\Lambda^k M \ni \omega : M \rightarrow \wedge^k T_p^* M##
  • ##k##-forms at the point ##p##, that is, ##\wedge^k T_p^* M \ni \omega_p : \otimes^k T_p M \rightarrow \mathbf{R}##.
Which is to say that the ##k##-form field ##\omega## is a smooth assignment of ##k##-forms ##\omega_p## to each point in ##p \in M##.
Sorry, ##\omega_p## should be a multilinear map from ##\times^k T_p M## to ##\mathbf{R}## and not from ##\otimes^k T_p M## to ##\mathbf{R}##, I believe..
 
  • Like
Likes ergospherical
cianfa72 said:
Sorry, ##\omega_p## should be a multilinear map from ##\times^k T_p M## to ##\mathbf{R}## and not from ##\otimes^k T_p M## to ##\mathbf{R}##, I believe..
Yes, good catch. :smile:
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 73 ·
3
Replies
73
Views
7K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 38 ·
2
Replies
38
Views
7K
  • · Replies 5 ·
Replies
5
Views
5K