Differentiating a particular integral (retarded potential)

Click For Summary
SUMMARY

The discussion centers on the differentiation of a particular integral related to the retarded potential in electromagnetism, specifically the equation $$\nabla_x^2 V(\boldsymbol{x},t)=-\frac{\rho(\boldsymbol{x},t)}{\varepsilon_0}+\frac{1}{c^2}\frac{\partial^2 V(\boldsymbol{x},t)}{\partial t^2}$$. The integral $$V(\boldsymbol{x},t)$$ is defined using a Lebesgue integral with the function $$\rho$$ under specific conditions. Participants emphasize the need for rigorous mathematical justification when differentiating under the integral sign and discuss the implications of the properties of functions in the space $$C_c^k(\mathbb{R}^4)$$.

PREREQUISITES
  • Understanding of Lebesgue integration
  • Familiarity with the concept of retarded potentials in electromagnetism
  • Knowledge of the function space $$C_c^k(\mathbb{R}^4)$$
  • Proficiency in partial differential equations and their applications
NEXT STEPS
  • Study the properties of Lebesgue integrals and differentiation under the integral sign
  • Explore the mathematical foundations of retarded potentials in classical electrodynamics
  • Investigate the implications of the Lorenz gauge condition in electromagnetic theory
  • Learn about the application of distributions, particularly the Dirac delta function, in mathematical physics
USEFUL FOR

This discussion is beneficial for physicists, mathematicians, and students specializing in electromagnetism, particularly those focused on mathematical proofs and the rigorous treatment of potentials and fields in theoretical physics.

DavideGenoa
Messages
151
Reaction score
5
Hi, friends! Under particular conditions on ##\phi:\mathbb{R}^3\times\mathbb{R}\to\mathbb{R}## - I think, as said here, that it is sufficient that ##\phi\in C_c^1(\mathbb{R}^4)##: please correct me if I am wrong - the following equality holds$$\frac{\partial}{\partial r_k}\int_{\mathbb{R}^3} \frac{\phi(\boldsymbol{l},t-c^{-1}\|\boldsymbol{r}-\boldsymbol{l}\|)}{\|\boldsymbol{r}-\boldsymbol{l}\|} d\mu_{\boldsymbol{l}}= \int_{\mathbb{R}^3} \frac{\partial}{\partial r_k}\left(\frac{\phi(\boldsymbol{l})}{\|\boldsymbol{r}-\boldsymbol{l}\|}\right) d\mu_{\boldsymbol{l}}$$where the integral is a Lebesgue integral.
Let $$V(\boldsymbol{x},t):=\frac{1}{4\pi \varepsilon_0}\int_{\mathbb{R}^3} \frac{\rho(\boldsymbol{y},t-c^{-1}\|\boldsymbol{x}-\boldsymbol{y}\|)}{\|\boldsymbol{x}-\boldsymbol{y}\|} d\mu_{\boldsymbol{y}},$$ which can be interpretated as a Lorenz gauge retarded electric potential in physics if ##\varepsilon_0## is permittivity, and let ##\rho## be under the assumptions stated for ##\phi## above. Then, by differentiating under the integral sign, we get$$\nabla_x V(\boldsymbol{x},t)=\frac{1}{4\pi \varepsilon_0}\int_{\mathbb{R}^3} -\frac{\dot\rho(\boldsymbol{y},t-c^{-1}\|\boldsymbol{x}-\boldsymbol{y}\|)}{c} \frac{\boldsymbol{x}-\boldsymbol{y}}{\|\boldsymbol{x}-\boldsymbol{y}\|^2} -\rho(\boldsymbol{y},t-c^{-1}\|\boldsymbol{x}-\boldsymbol{y}\|) \frac{\boldsymbol{x}-\boldsymbol{y}}{\|\boldsymbol{x}-\boldsymbol{y}\|^3} d\mu_{\boldsymbol{y}}$$where ##\dot\rho## is the partial derivative taken with respect to the second argument.

I would like to prove to myself that ##V## satisfies the equality $$\nabla_x^2 V(\boldsymbol{x},t)=-\frac{\rho(\boldsymbol{x},t)}{\varepsilon_0}+\frac{1}{c^2}\frac{\partial^2 V(\boldsymbol{x},t)}{\partial t^2}$$which I think to be satisfied by imposing such assumptions on ##\rho##, usual in physics.
I think that we cannot differentiate another time under the integral with respect to ##x_1##, ##x_2##, ##x_3## because informal derivations that I have found of the above equality (as in D.J. Griffiths' Introduction to Electrodynamics) introduce ##\delta## not to get a zero Lebesgue integral. Of course I am trying to get a mathematical proof, a rigourous one, and I know that, if we write a ##\delta##, there must be a mathematical justification for that: ##\forall\varphi\in C_c^2(\mathbb{R}^3)## ## \int_{\mathbb{R}^3}\frac{\nabla_y^2\varphi(\mathbf{y})}{\| \mathbf{x}-\mathbf{y}\|}d\mu_{\mathbf{y}}=-4\pi \varphi(\mathbf{x}),## while ##\int_{\mathbb{R}^3} \varphi(\mathbf{y}) \nabla_x^2 \left( \frac{1}{\| \mathbf{x}-\mathbf{y}\|} \right) d\mu_{\mathbf{y}}=\int_{\mathbb{R}^3} \varphi(\mathbf{y})\cdot 0 \,d\mu_{\mathbf{y}}####=0##.
Could anybody help me to take the divergence of ##\nabla_x V## to prove that ##\nabla_x^2 V=-\frac{\rho}{\varepsilon_0}+\frac{1}{c^2}\frac{\partial^2 V}{\partial t^2}##?
I ##\infty##-ly thank you!
 
Last edited:
Physics news on Phys.org
I think that another lemma (proved here) useful to prove the desired equality may be: if ##\rho\in C_c^k(\mathbb{R}^4)## and ##f:\mathbb{R^3}\mapsto \mathbb{R}## is locally summable (as ##\boldsymbol{z}\mapsto 1/\|\boldsymbol{y}\|## is), then for any , then we can differentiate under the integral sign in the following way:$$D_{(\boldsymbol{x},t)}^\alpha \int_{\mathbb{R}^3} f(\boldsymbol{x}-\boldsymbol{y}) \rho(\boldsymbol{y},t-c^{-1}\|\boldsymbol{x}-\boldsymbol{y}\|)d\mu_{\boldsymbol{y}}= \int_{\mathbb{R}^3}f(\boldsymbol{x}-\boldsymbol{y})D_{(\boldsymbol{y},t)}^\alpha\rho(\boldsymbol{y},t-c^{-1}\|\boldsymbol{x}-\boldsymbol{y}\|) d\mu_{\boldsymbol{y}}$$where ##D^\alpha## are the partial derivatives of order ##\le k##.
Nevertheless I have not been able to reach the desired result yet...
Could anybody give me help? I heartily thank you all!
 
Errata corrige: I think that another lemma (proved here) useful to prove the desired equality may be: if ##\rho\in C_c^k(\mathbb{R}^4)## and ##f:\mathbb{R^3}\mapsto \mathbb{R}## is locally summable (as ##\boldsymbol{z}\mapsto 1/\|\boldsymbol{y}\|## is), then for any , then we can differentiate under the integral sign in the following way:$$D_{(\boldsymbol{x},t)}^\alpha \int_{\mathbb{R}^3} f(\boldsymbol{x}-\boldsymbol{y}) \rho(\boldsymbol{y},t-c^{-1}\|\boldsymbol{x}-\boldsymbol{y}\|)d\mu_{\boldsymbol{y}}= \int_{\mathbb{R}^3}f(\boldsymbol{x}-\boldsymbol{y})D_{(\boldsymbol{\xi},t)}^\alpha\rho(\boldsymbol{y},t-c^{-1}\|\boldsymbol{x}-\boldsymbol{y}\|) d\mu_{\boldsymbol{y}}$$where ##D^\alpha## are the partial derivatives of order ##\le k## and ##\boldsymbol{\xi}=(\xi_1,\xi_2,\xi_3)## are the first three variables of ##\rho:(\boldsymbol{\xi},\tau)\mapsto\rho(\boldsymbol{\xi},\tau) ##.
Nevertheless I have not been able to reach the desired result yet...
Could anybody give me help? I heartily thank you all![/QUOTE]
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K