Differentiating ln x from first principles

Click For Summary
The discussion focuses on differentiating the natural logarithm function y = ln x using first principles, specifically the definition involving the Euler number. Two methods are presented: the first involves implicit differentiation using e^y = x, leading to dy/dx = 1/x, while the second method applies the limit definition of the derivative directly. Participants clarify the manipulation of logarithmic expressions and the importance of not assuming the derivative of e^x without justification. The conversation also touches on the need to demonstrate the limit that defines the Euler number in the context of differentiation. Overall, the thread emphasizes understanding the foundational principles behind the differentiation process.
Imperial
Hi all.

For any of you who have done differential calculus, I need a little help with a problem involving natural logarithms.

The question asks to differentiate y = ln x from first principles . It says "use the definition of the Euler number, namely e = lim(n->inf.) (1+1/n)^n.".
First principles means f'(x) = lim(h->0) [f(x+h) - f(x)] / h (this is the first thing we learned in calculus).

I so far managed two different methods:
Method 1. y = ln x
therefore e^y = x
dx/dy = e^y.
Since dx/dy * dy/dx = 1
1/(dx/dy) = dy/dx.
= 1/e^y
= 1/x.

Method 2. y = ln x
f(x) = ln x
f(x+h) = ln (x+h)
f'(x) = lim(h->0) [ln (x+h) - ln x] / h
= lim(h->0) ln (x+h/x) / h
= lim(h->0) 1/h * ln(1+h/x)
Since lim(h->0) ln(1+h/x) -> h/x where h != 0,
f'(x) = 1/h * h/x
= 1/x

Both of these methods work and are valid, although I didn't bring the definition of the Euler number into it. I personally have no idea how to do this. Could anyone here who has done a bit of math before please help me with this?

Thanks.
 
Mathematics news on Phys.org
Would you mind telling me how you arrive at
= lim(h->0) ln (x+h/x) / h
= lim(h->0) 1/h * ln(1+h/x)
?
What happened to the first x?

Not to mention:
Since lim(h->0) ln(1+h/x) -> h/x where h != 0
Surely you know that lim(h->0) does NOT depend on h!


Probably what your instructor intends is to use your first calculation: if y= ln(x) then x= e^y . HOWEVER, you cannot assume that the derivative of e^x is e^x: that's where "first principles" comes in.

If y(x)= e^x, then y(x+ h)= e^(x+h) so (y(x+h)- y(x))/h=
(e^(x+h)-e^x)/h= (e^x e^h- e^x)/h= (e^x)((e^h-1)/h).

The derivative of e^x is (lim(h->0)(e^h-1)/h) e^x.

You need to show "from first principles" that

lim(h->0) (e^h-1)/h = 1.
 
The first "x" wasn't lost- remember the logarithm laws:
ln a - ln b = ln(a/b) so my expression ln(x+h) - ln(x) became ln(x+h/x).

As for differentiating e^x, that is easy.
f(x) = e^x
f(x+h) = e^(x+h)
f'(x) = lim(h->0) e^(x+h) - e^(x) / h
= lim(h->0) e^x(e^h - 1) / h
= e^x lim(h->0) e^h - 1 /h
The definition of the Euler number is lim(n->inf.) (1+1/n)^n which can become lim(h->0) (1+h)^1/h.
therefore
f'(x) = e^x lim(h->0) (1+h)^1/h^h - 1 / h
= e^x lim(h->0) 1 + h - 1 /h
= e^x lim(h->0)h/h
= e^x

Although that doesn't really come into it. A previous question in the excercise asked that, and I think that there is probably some other method which needs to be used. Is anyone here familiar with any other methods?
 
Oh, I see now: when you wrote ln(x+h/x) you MEANT ln((x+h)/x)
(although when you wrote ln(1+ h/x) you DIDN'T mean ln((1+h)/x).)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
589
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K