MHB Differentiating $\mathcal{E}$: How to Reach $\dot{x}(m\ddot{x} + kx)$?

Click For Summary
The discussion centers on the differentiation of the energy equation $\mathcal{E} = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$. Participants clarify that the correct form of kinetic energy includes the square of speed, leading to the derivative $\frac{d\mathcal{E}}{dt} = m\dot{x}\ddot{x} + kx\dot{x}$. The confusion arises from an incorrect initial formulation of energy, which led to a misinterpretation of the derivative. Ultimately, the consensus suggests that the original energy equation in the book contains a typo, necessitating correction for accurate differentiation. This highlights the importance of precise definitions in physics equations.
Dustinsfl
Messages
2,217
Reaction score
5
$\mathcal{E} = \frac{1}{2}m\dot{x} + \frac{1}{2}kx^2$
The derivative is
$$
\frac{d\mathcal{E}}{dt} = \frac{1}{2}m\ddot{x} + kx\dot{x}
$$
but the solution is suppose to be
$$
\frac{d\mathcal{E}}{dt} = \dot{x}(m\ddot{x} + kx).
$$
How?
 
Physics news on Phys.org
dwsmith said:
$\mathcal{E} = \frac{1}{2}m\dot{x} + \frac{1}{2}kx^2$
The derivative is
$$
\frac{d\mathcal{E}}{dt} = \frac{1}{2}m\ddot{x} + kx\dot{x}
$$
but the solution is suppose to be
$$
\frac{d\mathcal{E}}{dt} = \dot{x}(m\ddot{x} + kx).
$$
How?

Hi dwsmith! :)

The first part of your energy is the kinetic energy.
However, kinetic energy contains speed squared instead of just speed.
So your energy formula should be:

$\qquad \mathcal{E} = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$
 
I like Serena said:
Hi dwsmith! :)

The first part of your energy is the kinetic energy.
However, kinetic energy contains speed squared instead of just speed.
So your energy formula should be:

$\qquad \mathcal{E} = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$

The book has a typo then.
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
846
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K