Differentiating the equation for the mechanical energy of a spring

Click For Summary

Homework Help Overview

The discussion revolves around differentiating the equation for the mechanical energy of a spring, represented as ## E = \frac {1}{2}mv^2 + \frac {1}{2}kx^2 ##, with respect to time. Participants are exploring the implications of this differentiation and the resulting expressions for the rate of change of energy.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • The original poster questions the differentiation result, suggesting an alternative expression. Some participants discuss the application of the chain rule and the roles of variables as functions of time. There are inquiries about the derivative of ##x^2## with respect to ##x## and its implications for the differentiation process.

Discussion Status

The discussion is active, with participants providing insights into the differentiation process and the chain rule. There is a focus on clarifying misunderstandings regarding derivatives and their applications in the context of the energy equation. Multiple interpretations of the differentiation results are being explored.

Contextual Notes

Participants are navigating through the mathematical principles involved in differentiation, including the chain rule and dimensional analysis. There is an acknowledgment of potential confusion regarding units and consistency in the expressions derived.

member 731016
Homework Statement
Please see below
Relevant Equations
## E = \frac {1}{2}mv^2 + \frac {1}{2}kx^2 ##
Why when we differentiate ## E = \frac {1}{2}mv^2 + \frac {1}{2}kx^2 ## with respect to time the answer is ## \frac {dE}{dt} = mva + kxv ##?

I though it would be ##\frac {dE}{dt} = ma + kv ##.

Many thanks!
 
Physics news on Phys.org
Callumnc1 said:
Homework Statement:: Please see below
Relevant Equations:: ## E = \frac {1}{2}mv^2 + \frac {1}{2}kx^2 ##

Why when we differentiate ## E = \frac {1}{2}mv^2 + \frac {1}{2}kx^2 ## with respect to time the answer is ## \frac {dE}{dt} = mva + kxv ##?

I though it would be ##\frac {dE}{dt} = ma + kv ##.

Many thanks!
What is the derivative of ##x^2## wrt ##x##?
 
  • Like
Likes   Reactions: member 731016
Chain rule. x and v are functions of t.
 
  • Like
Likes   Reactions: member 731016
The time rate of change in energy is power.

With what you thought it would be the units on the RHS are Force added to Force per unit time. Not only are neither of them power, they are also dimensionally inconsistent with each other.
 
Last edited:
  • Like
Likes   Reactions: member 731016
haruspex said:
What is the derivative of ##x^2## wrt ##x##?
Thank you for your reply @haruspex ! I don't think I've ever taken the derivative of ##x^2## wrt ##x##. I think I've only the derivative of ##y## wrt ##x##. How would I take the derivative?
 
Frabjous said:
Chain rule. x and v are functions of t.
Thank you for your reply @Frabjous !
 
  • Like
Likes   Reactions: Frabjous
erobz said:
The time rate of change in energy is power.

With what you thought it would be the units on the RHS are Force added to Force per unit time. Not only are neither of them power, they are also dimensionally inconsistent with each other.
Thank you for your reply @erobz !
 
  • Like
Likes   Reactions: erobz
Callumnc1 said:
Thank you for your reply @haruspex ! I don't think I've ever taken the derivative of ##x^2## wrt ##x##. I think I've only the derivative of ##y## wrt ##x##. How would I take the derivative?
You almost certainly have, you just don’t realize it. ##y=x^2##
 
  • Like
Likes   Reactions: member 731016
erobz said:
You almost certainly have, you just don’t realize it. ##y=x^2##
Thanks for your reply @erobz!

Oh I thought that was taking the derivative of y with respect to x to get ##2x##?
 
  • #10
Callumnc1 said:
Thanks for your reply @erobz!

Oh I thought that was taking the derivative of y with respect to x to get ##2x##?
That’s correct. Then you apply the chain rule. First differentiate ##y =x^2 ## wrt ##x##, then ##x## wrt ##t##.
 
  • Like
Likes   Reactions: member 731016
  • #11
erobz said:
That’s correct. Then you apply the chain rule. First differentiate ##y =x^2 ## wrt ##x##, then ##x## wrt ##t##.
Thank you for your reply @erobz! I think it would be ## y = (2x)\frac {dx}{dt} ##
 
  • Like
Likes   Reactions: erobz
  • #12
Callumnc1 said:
Thank you for your reply @erobz! I think it would be ## y = (2x)\frac {dx}{dt} ##
Do you see how it works out?
 
  • Like
Likes   Reactions: member 731016
  • #13
Callumnc1 said:
Thank you for your reply @erobz! I think it would be ## y = (2x)\frac {dx}{dt} ##
Not quite. You must do the same to each side of an equation.
The derivative of y wrt x is ##\frac{dy}{dx}##.
The derivative of ##x^2## wrt x is ##\frac{d(x^2)}{dx}=2x##.
So differentiating both sides of ##y=x^2## wrt x gives
##\frac{dy}{dx}=2x##.
 
Last edited:
  • Like
Likes   Reactions: member 731016
  • #14
haruspex said:
Not quite. You must do the same to each side of an equation.
The derivative of y wrt x is ##\frac{dy}{dx}##.
The derivative of ##x^2## wrt x is ##\frac{d(x^2)}{dx}=2x##.
So differentiating both sides of ##y=x^2## wrt x gives
##\frac{dy}{dx}=x^2##.
last line typo:

$$ \frac{dy}{dx}= 2x $$
 
  • Like
Likes   Reactions: member 731016 and haruspex
  • #15
erobz said:
last line typo:

$$ \frac{dy}{dx}= 2x $$
thanks - corrected,
 
  • Like
Likes   Reactions: member 731016
  • #16
haruspex said:
Not quite. You must do the same to each side of an equation.
The derivative of y wrt x is ##\frac{dy}{dx}##.
The derivative of ##x^2## wrt x is ##\frac{d(x^2)}{dx}=2x##.
So differentiating both sides of ##y=x^2## wrt x gives
##\frac{dy}{dx}=2x##.
Thank you for your replies @erobz and haruspex! Sorry, that was a silly mistake I should not have made!
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
24
Views
4K
Replies
2
Views
2K
Replies
7
Views
3K
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K