Differentiating the equation for the mechanical energy of a spring

Click For Summary
SUMMARY

The discussion centers on differentiating the mechanical energy equation of a spring, represented as ## E = \frac {1}{2}mv^2 + \frac {1}{2}kx^2 ##. The correct differentiation with respect to time yields ## \frac {dE}{dt} = mva + kxv ##, contrary to the initial assumption of ## \frac {dE}{dt} = ma + kv ##. Participants clarified that the time rate of change in energy is equivalent to power, emphasizing the importance of applying the chain rule correctly when differentiating functions of time.

PREREQUISITES
  • Understanding of mechanical energy concepts
  • Familiarity with differentiation and the chain rule
  • Knowledge of power in physics
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the application of the chain rule in calculus
  • Explore the relationship between energy and power in physics
  • Learn about the mechanical properties of springs and Hooke's Law
  • Practice differentiating various functions with respect to time
USEFUL FOR

Students of physics, educators teaching mechanics, and anyone interested in mastering calculus applications in physical systems.

member 731016
Homework Statement
Please see below
Relevant Equations
## E = \frac {1}{2}mv^2 + \frac {1}{2}kx^2 ##
Why when we differentiate ## E = \frac {1}{2}mv^2 + \frac {1}{2}kx^2 ## with respect to time the answer is ## \frac {dE}{dt} = mva + kxv ##?

I though it would be ##\frac {dE}{dt} = ma + kv ##.

Many thanks!
 
Physics news on Phys.org
Callumnc1 said:
Homework Statement:: Please see below
Relevant Equations:: ## E = \frac {1}{2}mv^2 + \frac {1}{2}kx^2 ##

Why when we differentiate ## E = \frac {1}{2}mv^2 + \frac {1}{2}kx^2 ## with respect to time the answer is ## \frac {dE}{dt} = mva + kxv ##?

I though it would be ##\frac {dE}{dt} = ma + kv ##.

Many thanks!
What is the derivative of ##x^2## wrt ##x##?
 
  • Like
Likes   Reactions: member 731016
Chain rule. x and v are functions of t.
 
  • Like
Likes   Reactions: member 731016
The time rate of change in energy is power.

With what you thought it would be the units on the RHS are Force added to Force per unit time. Not only are neither of them power, they are also dimensionally inconsistent with each other.
 
Last edited:
  • Like
Likes   Reactions: member 731016
haruspex said:
What is the derivative of ##x^2## wrt ##x##?
Thank you for your reply @haruspex ! I don't think I've ever taken the derivative of ##x^2## wrt ##x##. I think I've only the derivative of ##y## wrt ##x##. How would I take the derivative?
 
Frabjous said:
Chain rule. x and v are functions of t.
Thank you for your reply @Frabjous !
 
  • Like
Likes   Reactions: Frabjous
erobz said:
The time rate of change in energy is power.

With what you thought it would be the units on the RHS are Force added to Force per unit time. Not only are neither of them power, they are also dimensionally inconsistent with each other.
Thank you for your reply @erobz !
 
  • Like
Likes   Reactions: erobz
Callumnc1 said:
Thank you for your reply @haruspex ! I don't think I've ever taken the derivative of ##x^2## wrt ##x##. I think I've only the derivative of ##y## wrt ##x##. How would I take the derivative?
You almost certainly have, you just don’t realize it. ##y=x^2##
 
  • Like
Likes   Reactions: member 731016
erobz said:
You almost certainly have, you just don’t realize it. ##y=x^2##
Thanks for your reply @erobz!

Oh I thought that was taking the derivative of y with respect to x to get ##2x##?
 
  • #10
Callumnc1 said:
Thanks for your reply @erobz!

Oh I thought that was taking the derivative of y with respect to x to get ##2x##?
That’s correct. Then you apply the chain rule. First differentiate ##y =x^2 ## wrt ##x##, then ##x## wrt ##t##.
 
  • Like
Likes   Reactions: member 731016
  • #11
erobz said:
That’s correct. Then you apply the chain rule. First differentiate ##y =x^2 ## wrt ##x##, then ##x## wrt ##t##.
Thank you for your reply @erobz! I think it would be ## y = (2x)\frac {dx}{dt} ##
 
  • Like
Likes   Reactions: erobz
  • #12
Callumnc1 said:
Thank you for your reply @erobz! I think it would be ## y = (2x)\frac {dx}{dt} ##
Do you see how it works out?
 
  • Like
Likes   Reactions: member 731016
  • #13
Callumnc1 said:
Thank you for your reply @erobz! I think it would be ## y = (2x)\frac {dx}{dt} ##
Not quite. You must do the same to each side of an equation.
The derivative of y wrt x is ##\frac{dy}{dx}##.
The derivative of ##x^2## wrt x is ##\frac{d(x^2)}{dx}=2x##.
So differentiating both sides of ##y=x^2## wrt x gives
##\frac{dy}{dx}=2x##.
 
Last edited:
  • Like
Likes   Reactions: member 731016
  • #14
haruspex said:
Not quite. You must do the same to each side of an equation.
The derivative of y wrt x is ##\frac{dy}{dx}##.
The derivative of ##x^2## wrt x is ##\frac{d(x^2)}{dx}=2x##.
So differentiating both sides of ##y=x^2## wrt x gives
##\frac{dy}{dx}=x^2##.
last line typo:

$$ \frac{dy}{dx}= 2x $$
 
  • Like
Likes   Reactions: member 731016 and haruspex
  • #15
erobz said:
last line typo:

$$ \frac{dy}{dx}= 2x $$
thanks - corrected,
 
  • Like
Likes   Reactions: member 731016
  • #16
haruspex said:
Not quite. You must do the same to each side of an equation.
The derivative of y wrt x is ##\frac{dy}{dx}##.
The derivative of ##x^2## wrt x is ##\frac{d(x^2)}{dx}=2x##.
So differentiating both sides of ##y=x^2## wrt x gives
##\frac{dy}{dx}=2x##.
Thank you for your replies @erobz and haruspex! Sorry, that was a silly mistake I should not have made!
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
24
Views
4K
Replies
2
Views
2K
Replies
7
Views
3K
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K