Differentiating under the integral sign

Click For Summary
SUMMARY

This discussion focuses on the technique of differentiation under the integral sign, specifically using the function defined as ##f(t) = \int_0^1 \frac{\log (tx+1)}{x^2+1} ~ dx##. The derivative of this function is calculated as ##f'(t) = \frac{\pi t + 2 \log (2) - 4 \log (t+1)}{4(1+t^2)}##. The integral is evaluated at ##f(1)##, and the conversation highlights the importance of using distinct variables for limits of integration and integrands to avoid confusion. The antiderivative relationship ##\int f'(t) dt = f(t) + C## is also emphasized as a fundamental concept.

PREREQUISITES
  • Understanding of differentiation under the integral sign
  • Familiarity with logarithmic functions and their properties
  • Knowledge of definite and indefinite integrals
  • Ability to manipulate and interpret mathematical symbols
NEXT STEPS
  • Study the properties of differentiation under the integral sign in more depth
  • Learn about the applications of logarithmic integrals in calculus
  • Explore the concept of dummy variables in integration
  • Investigate advanced techniques in integral calculus, such as integration by parts
USEFUL FOR

Mathematicians, calculus students, and educators looking to deepen their understanding of integration techniques and differentiation under the integral sign.

Mr Davis 97
Messages
1,461
Reaction score
44
I am looking at a solution to an integral using differentiation under the integral sign. So let ##\displaystyle f(t) = \frac{\log (tx+1)}{x^2+1}##. Then, through calculation, ##\displaystyle f'(t) = \frac{\pi t + 2 \log (2) - 4 \log (t+1)}{4(1+t^2)}##. The solution immediately goes to say that ##\displaystyle f(t) = \frac{\log (2) \arctan (t)}{2} + \frac{\pi \log (t^2+1)}{8} - \int_0^t \frac{\log (t+1)}{t^2+1} ~ dt##. Could someone make this step a bit clearer? How does the LHS just become ##f(t)##?
 
Physics news on Phys.org
Mr Davis 97 said:
I am looking at a solution to an integral using differentiation under the integral sign. So let ##\displaystyle f(t) = \frac{\log (tx+1)}{x^2+1}##. Then, through calculation, ##\displaystyle f'(t) = \frac{\pi t + 2 \log (2) - 4 \log (t+1)}{4(1+t^2)}##. The solution immediately goes to say that ##\displaystyle f(t) = \frac{\log (2) \arctan (t)}{2} + \frac{\pi \log (t^2+1)}{8} - \int_0^t \frac{\log (t+1)}{t^2+1} ~ dt##. Could someone make this step a bit clearer? How does the LHS just become ##f(t)##?
The antiderivative of the derivative of a function is the function (plus an arbitrary constant). It's as simple as that.

In symbols: ##\int f'(t) dt = f(t) + C##

As a definite integral, along the lines of the equation you showed,
##\int_0^t f'(x)dx = f(t) - f(0)##. Here -f(0) is the constant C I showed above.
 
Mr Davis 97 said:
I am looking at a solution to an integral

What is the integral whose solution you seek?
 
Stephen Tashi said:
What is the integral whose solution you seek?
Sorry, I made a mistake. The first line should be ##\displaystyle f(t) = \int_0^1 \frac{\log (tx+1)}{x^2+1} ~ dx##. The integral I seek is ##f(1)##.
 
Mark44 said:
The antiderivative of the derivative of a function is the function (plus an arbitrary constant). It's as simple as that.

In symbols: ##\int f'(t) dt = f(t) + C##

As a definite integral, along the lines of the equation you showed,
##\int_0^t f'(x)dx = f(t) - f(0)##. Here -f(0) is the constant C I showed above.
I guess the use of ##t## is a limit of integration is confusing me, since t is already a variable elsewhere. For example, say that ##\frac{dy}{dx} = 2x##. Then ##\int_0^x dy = \int_0^x 2x ~dx##. Doesn't this latter statement seem kind of weird? Why is x a limit of integration if it is already used as a variable? Also, what does ##\int_0^x dy## turn out to look like?
 
Mr Davis 97 said:
I guess the use of ##t## is a limit of integration is confusing me, since t is already a variable elsewhere. For example, say that ##\frac{dy}{dx} = 2x##. Then ##\int_0^x dy = \int_0^x 2x ~dx##. Doesn't this latter statement seem kind of weird? Why is x a limit of integration if it is already used as a variable? Also, what does ##\int_0^x dy## turn out to look like?
A limit of integration shouldn't be used also as a variable in the integrand (AKA "dummy variable"). You should note that in my 2nd example I was careful to use different variables for the two different roles.

If ##\frac{dy}{dx} = 2x##, then ##dy = 2x dx##, so ##\int_0^t dy = \int_0^t 2x dx \Rightarrow y(t) - y(0) = x^2|_0^t \Rightarrow y(t) = t^2 + y(0)##
 
  • Like
Likes   Reactions: Mr Davis 97
Mark44 said:
A limit of integration shouldn't be used also as a variable in the integrand (AKA "dummy variable"). You should note that in my 2nd example I was careful to use different variables for the two different roles.

If ##\frac{dy}{dx} = 2x##, then ##dy = 2x dx##, so ##\int_0^t dy = \int_0^t 2x dx \Rightarrow y(t) - y(0) = x^2|_0^t \Rightarrow y(t) = t^2 + y(0)##
Okay, so the fact the solution I am reading does use the same variable as the variable in the integrand is not technically wrong, but is just bad "style"?
 
Mr Davis 97 said:
Okay, so the fact the solution I am reading does use the same variable as the variable in the integrand is not technically wrong, but is just bad "style"?
Yes, and confusing to some.
 
  • Like
Likes   Reactions: Mr Davis 97

Similar threads

  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K