DivGradCurl
- 364
- 0
Hi there,
I have a question regarding the differentiation of a power series. I understand what my book says about the index in a power series...
\frac{d}{dx} \left[ \sum _{n=0} ^{\infty} c_n \left( x - a \right) ^n \right] = \sum _{n=1} ^{\infty} n c_n \left( x - a \right) ^{n-1}
it changes from n=0 to n=1 due to the loss of a term, namely c_0.
\frac{d}{dx} \left[ \sum _{n=1} ^{\infty} n c_n \left( x - a \right) ^{n-1} \right] = \sum _{n=2} ^{\infty} n \left( n-1 \right) c_n \left( x - a \right) ^{n-2}
it changes from n=1 to n=2 due to the loss of a term, namely c_1.
I get a bit confused when it comes down to the real stuff. For example, consider the following:
\frac{d}{dx} \left[ \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{2n+1}}{n! \left( n+1 \right) ! 2^{2n+1}} \right] = \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n \left( 2n+1 \right) x^{2n}}{n! \left( n+1 \right) ! 2^{2n+1}}
and
\frac{d}{dx} \left[ \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n \left( 2n+1 \right) x^{2n}}{n! \left( n+1 \right) ! 2^{2n+1}} \right] = \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n \left( 2n \right) \left( 2n+1 \right) x^{2n-1}}{n! \left( n+1 \right) ! 2^{2n+1}}
The index does not change in either case. My question is: do I always need to expand the series to determine it? Or, is there a shortcut to determine the value of the index?
Thanks.
I have a question regarding the differentiation of a power series. I understand what my book says about the index in a power series...
\frac{d}{dx} \left[ \sum _{n=0} ^{\infty} c_n \left( x - a \right) ^n \right] = \sum _{n=1} ^{\infty} n c_n \left( x - a \right) ^{n-1}
it changes from n=0 to n=1 due to the loss of a term, namely c_0.
\frac{d}{dx} \left[ \sum _{n=1} ^{\infty} n c_n \left( x - a \right) ^{n-1} \right] = \sum _{n=2} ^{\infty} n \left( n-1 \right) c_n \left( x - a \right) ^{n-2}
it changes from n=1 to n=2 due to the loss of a term, namely c_1.
I get a bit confused when it comes down to the real stuff. For example, consider the following:
\frac{d}{dx} \left[ \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{2n+1}}{n! \left( n+1 \right) ! 2^{2n+1}} \right] = \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n \left( 2n+1 \right) x^{2n}}{n! \left( n+1 \right) ! 2^{2n+1}}
and
\frac{d}{dx} \left[ \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n \left( 2n+1 \right) x^{2n}}{n! \left( n+1 \right) ! 2^{2n+1}} \right] = \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n \left( 2n \right) \left( 2n+1 \right) x^{2n-1}}{n! \left( n+1 \right) ! 2^{2n+1}}
The index does not change in either case. My question is: do I always need to expand the series to determine it? Or, is there a shortcut to determine the value of the index?
Thanks.
Last edited: