Difficult capacitance problem -- 3 long concentric metal cylinders

Click For Summary
SUMMARY

The discussion centers on the effective capacitance between three long concentric metal cylinders, specifically the relationship between the inner (A), middle (B), and outer (C) cylinders. The effective capacitance is expressed as C (effective) = C1 + C2, where C1 is the capacitance between A and B, and C2 is the capacitance between B and C, indicating that they are arranged in parallel. Participants express confusion regarding the definition of capacitance C1 due to the potential difference being zero when the cylinders are connected. The conversation highlights discrepancies in online solutions and emphasizes the need for clarity in understanding the arrangement of the cylinders.

PREREQUISITES
  • Understanding of capacitance concepts, specifically for cylindrical geometries.
  • Familiarity with the principles of parallel capacitors.
  • Knowledge of electrostatics and potential difference in conductive materials.
  • Ability to interpret mathematical expressions related to capacitance.
NEXT STEPS
  • Study the derivation of capacitance for concentric cylindrical shells.
  • Learn about the application of Gauss's Law in electrostatics.
  • Explore the concept of effective capacitance in parallel arrangements.
  • Review examples of capacitance calculations involving multiple conductive layers.
USEFUL FOR

Physics students, electrical engineers, and anyone studying electrostatics or capacitor design will benefit from this discussion, particularly those interested in complex capacitor configurations.

phantomvommand
Messages
287
Reaction score
39
Homework Statement
Three long concentric conducting cylindrical shells have radii R,2R and (root2)*R. Inner and outer shells are connected to each other. The capacitance across middle and inner shells per unit length is:
Relevant Equations
Capacitance per unit length for cylindrical shells:
C = 2pi e0/ ln(r2/r1)
A solution I found online claims that the effective capacitance between the middle and inner shell can be seen as:

C (effective) = C1 + C2,
where C1 is the capacitance between the inner and outermost shell, and C2 is the capacitance between the middle and outermost shell. Apparently C1 and C2 are arranged in parallel, and the capacitance between the middle and inner shell is the effective capacitance across this parallel arrangement.

Does anyone know why this is so?

Thank you!
 
Last edited by a moderator:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Something confuses me here. Is there supposed to be a straight linear conductor located at the center of all shells? Otherwise how can we define the capacitance C1 between the inner and outer shell since they are connected , hence they are at same potential , hence the potential difference ##V## is zero so ##C_1=\frac{Q_1}{V}=\frac{Q_1}{0}##??
 
Delta2 said:
Something confuses me here. Is there supposed to be a straight linear conductor located at the center of all shells? Otherwise how can we define the capacitance C1 between the inner and outer shell since they are connected , hence they are at same potential , hence the potential difference ##V## is zero so ##C_1=\frac{Q_1}{V}=\frac{Q_1}{0}##??
Exactly. I am not sure either. How would you solve this problem?
The link below is where I found the problem. Unfortunately, the teacher is speaking in hindi (i think), which I do not understand. Nonetheless, his workings can be roughly understood.
https://doubtnut.com/question-answe...2r-and-2sqrtr-inner-and-outer-shells-12228579

The following links explain the same problem too:
https://www.getpractice.com/questions/126640
https://www.toppr.com/ask/question/three-long-concentric-conducting-cylindrical-shells-have-radii-r2-r-and-2sqrt2-r-inner-and/
https://brainly.in/question/11974351
 
If you think about it like this, it might help…

Call the inner cylinder A, the middle cylinder B, and the outer cylinder C.

##C_1##’s ‘plates’ are the outer surface of A and inner surface of B.
##C_2##’s ‘plates’ are the outer surface of B and inner surface of C.

The connection between A and C form a junction between ##C_1## and ##C_2##.
The body of B forms another junction between ##C_1## and ##C_2##.
So ##C1## and ##C2## are in parallel.
 
  • Like
Likes   Reactions: Delta2
Steve4Physics said:
If you think about it like this, it might help…

Call the inner cylinder A, the middle cylinder B, and the outer cylinder C.

##C_1##’s ‘plates’ are the outer surface of A and inner surface of B.
##C_2##’s ‘plates’ are the outer surface of B and inner surface of C.

The connection between A and C form a junction between ##C_1## and ##C_2##.
The body of B forms another junction between ##C_1## and ##C_2##.
So ##C1## and ##C2## are in parallel.
This has been very helpful. However, it the solution online claims that the capacitance between AB = Capacitance of AC + BC. Why is this so? I can't see how a similar argument is applied.
 
  • Like
Likes   Reactions: Delta2
phantomvommand said:
This has been very helpful. However, it the solution online claims that the capacitance between AB = Capacitance of AC + BC. Why is this so? I can't see how a similar argument is applied.

I have since looked at each of the links in detail. Apart from the original link, the remaining links describe a problem where the radii are R, 2R and sqrt8 R, while the original problem describes a problem where the radii are R, sqrt2 R and 2R.

However, they all get the same answer of 6e0/ln2. I suspect the original link solved the problem wrongly. Following Steve4Physics's logic, the 6e0/ln2 can indeed be obtained for the problem where the radii are R, 2R and sqrt8 R.
 
  • Like
Likes   Reactions: Steve4Physics
phantomvommand said:
However, it the solution online claims that the capacitance between AB = Capacitance of AC + BC. Why is this so? I can't see how a similar argument is applied.
I can’t follow the online solution. It basically says:
C1 is formed by the outer surface of A and the inner surface of C.
C2 is formed by the outer surface of B and the inner surface of C.

But this means the inner surface of C has two (conflicting) functions – simultaneously acting as a plate belonging to 2 different capacitors. This doesn’t make sense.

Also, C1 isn’t a simple capacitor because it has cylinder B sitting inside.

So the online solution has some problems.
 
  • Like
Likes   Reactions: phantomvommand
Steve4Physics said:
If you think about it like this, it might help…
Yes. Perhaps it is easier to think of the corresponding parallel plate capacitor having layers A,B,C.
If we attach a wire to A,C as one port and to B as the other this will also give ##C_{AB}\parallel C_{BC}##.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
1
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
5K
Replies
5
Views
3K
Replies
8
Views
5K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 6 ·
Replies
6
Views
10K