Diffraction pattern from a grating

AI Thread Summary
The discussion centers on the visibility of second-order maxima in a diffraction pattern and the factors affecting it. The initial assumption that decreasing the distance between the grating and the light source would increase intensity was incorrect; the correct factor is reducing the number of lines per unit length of the grating. This reduction increases the distance between slits, allowing for better constructive interference at second-order maxima. It is clarified that the second-order maxima may not be visible due to their spacing rather than their intensity. Overall, understanding the relationship between slit density and interference patterns is crucial for observing higher-order maxima.
techsingularity2042
Messages
20
Reaction score
2
Homework Statement
Monochromatic light is incident on a diffraction grating. The diffraction pattern from the diffraction grating is then formed on a screen.
Only the central maximum and the first-order maxima can be observed on the screen.
What change will allow the second-order maxima to be observed on the screen?
Relevant Equations
d sin θ = n λ
A. Decrease the distance between the diffraction grating and the source of light

B. Increase the distance between the diffraction grating and the screen

C. Increase the wavelength of the monochromatic light

D. Reduce the number of lines per unit length of the diffraction grating


I chose A and got it wrong. I initially thought the second-order maxima were not visible due to their low intensity and assumed that decreasing the distance between the grating and the source would increase the intensity, making the second-order maxima observable.

However, the correct answer was D. This implies that the visibility issue was not a matter of intensity (as decreasing the number of lines/slits decreases the intensity of the bright fringes).

What I assumed after looking at the answer - the mark scheme does not provide any explanation, just the answer - was when there are lots of lines in a diffraction grating, only a small angular movement away from the center of a bright fringe will be needed before there is a pair of slits that have a phase difference of π. Because there are way too many lines/slits in the grating, destructive interference occurs instead. Hence, reducing the number of lines would help the constructive interference to take place at second-order maxima.

Is my assumption correct?
Also, shouldn't A also be correct?
 
Last edited:
Physics news on Phys.org
Only the central maximum and the first-order maxima can be observed on the screen.

Perhaps that means that the second-order maxima are too widely spaced to fit on the screen. Not that they are too faint to see?
 
  • Like
Likes techsingularity2042
PeroK said:
Only the central maximum and the first-order maxima can be observed on the screen.

Perhaps that means that the second-order maxima are too widely spaced to fit on the screen. Not that they are too faint to see?
Thanks, I overlooked the part 'per unit length'. Reducing the number of lines per unit length increases the distance between slits. This leads to decrease in the distance between the neighboring bright fringes. So the second maxima would be captured on the screen.
 
techsingularity2042 said:
Thanks, I overlooked the part 'per unit length'. Reducing the number of lines per unit length increases the distance between slits. This leads to decrease in the distance between the neighboring bright fringes. So the second maxima would be captured on the screen.
I think that's what they mean.
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...
Back
Top