How Can Nonlinear Systems be Modeled without Aliasing Artifacts?

  • Thread starter Thread starter haminous
  • Start date Start date
  • Tags Tags
    Digital Modeling
Click For Summary
Modeling nonlinear systems without aliasing artifacts is challenging due to harmonic generation beyond the Nyquist frequency. Oversampling and filtering are common strategies, but designing a frequency response for sampling and inverse FFT can yield an FIR filter kernel, which may only approximate nonlinear behavior. The Harmonic Balance Method (HBM) is a suggested frequency domain approach for periodic nonlinear responses, though it can be complex due to the nature of nonlinear systems. Accurate modeling often requires validation against time domain data or measurements to avoid misleading results. The discussion highlights the difficulty of balancing time domain simplicity with the need for a more precise frequency-limited model.
haminous
Messages
6
Reaction score
0
So I've been having a bit of fun with FFT's of some nonlinear functions applied to sine waves and I noticed 'reflection' of the harmonics due to generation of frequencies beyond the Nyquist frequency. This comes as no surprise, but it left me wondering how one might model nonlinear systems without generating erroneous frequency components (in a guitar effects pedal, for instance). Is there a clever way to do this or does one have to 'brute force' it by massively oversampling and filtering?
 
Engineering news on Phys.org
If you're keenly aware of what you want to happen in the frequency domain, you might be able to design the frequency response that you want, then sample it and take its inverse FFT. The result will be an FIR filter kernel. You can convolve this with your input to get any kind of frequency-domain behavior you want, without introducing frequencies higher than Nyquist.

On the other hand, an FIR filter is a linear filter, so it can only approximate the behavior of the non-linear filter. Maybe the part that sounds good to the ear can be modeled linearly, though?

- Warren
 
The simplest way to model nonlinear behavour is in the time domain.

One way to do it in the frequency domain if the response is for periodic (but non-sinusoidal, and amplitude dependent) is the Harmonic Balance Method (HBM or IHBM).

On the other hand, some nonlinear systems can generate responses that are unrelated to anything in a "linearised" (small-amplitude) model of the system or the frequency of the input force, and trying to model that in the frequency domain is a seriously hard problem.

The output from any frequency domain model tends to be restricted by the assumptions you made in setting up the model, and if those don't correspond to what the real system can do the "answers" can range from useful approximations to completely wrong. You need some independent information (either a time domain model, or some measurements) to validate what you get.

There is no particular problem in having a large (even infinite) frequency range in a FD model, but (as your OP implied) you need to careful about aliasing etc when converting between the time and frequency domains. This is often an artefact of using sampled data to represent the time domain, not something that is intrinsic to "real world" analog nonlinear systems.
 
chroot, ...
...thanks for the suggestion, but in this case it's specifically harmonic generation due to nonlinear effects that I'm interested in analyzing so an FIR wouldn't quite do it here.

AlephZero, ...
...it's precisely those aliasing 'artifacts' that I would like to avoid for exactly the reason you stated - it doesn't represent the real world system. It seems like I'm caught somewhere between the simple time domain modeling (which is what I've been doing) and needing something that represents a more accurate frequency-limited model. Thanks for your insights. I've never heard of the HBM method before; it looks fascinating. Sounds like this is a tough problem in general. Ironically enough, I'm actually working on analysis of nonlinear harmonic generation for the purpose of making these kinds of problems simpler.

On a sidenote, does anyone know of an analog circuit that can produce either a hyperbolic tangent or logistic function of its input?
 
Thread 'I thought it was only Amazon that sold unsafe junk'
I grabbed an under cabinet LED light today at a big box store. Nothing special. 18 inches in length and made to plug several lights together. Here is a pic of the power cord: The drawing on the box led me to believe that it would accept a standard IEC cord which surprised me. But it's a variation of it. I didn't try it, but I would assume you could plug a standard IEC cord into this and have a double male cord AKA suicide cord. And to boot, it's likely going to reverse the hot and...

Similar threads

Replies
7
Views
4K
Replies
17
Views
5K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
3
Views
8K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 0 ·
Replies
0
Views
5K
Replies
17
Views
7K