MHB Dimension of the cut-out squares that result in largest possible side area

obesiston
Messages
1
Reaction score
0
A topless square box is made by cutting little squares out of the four corners of a square sheet of metal 12 inches on a side, and then folding up the resulting flaps. What is the largest side area which can be made in this way?

What information I have so far is that since the side of the little squares are unknown, I called them "x", and so since the length of the full box is 12 inches, once folded up I'd have 12-2x. One thing I'm having trouble with is setting up my equation. I've done a similar problem before where it asks for volume, but I don't fully understand what it means by "side area." I also need to complete the perfect square to find dimension of the cut-out squares that result in largest possible side area.
 
Mathematics news on Phys.org
four sides, each with area $x(12-2x)$

therefore, total side area, $A = 4x(12-2x)$
 
I would be inclined to think that "side area" means "area of the sides" which is what what skeeter calculated.
 
If you interpret "largest side area" as meaning the area of one side, instead of all four, or the area of the four sides plus the bottom, you get the same answer so it really doesn't matter!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top