Undergrad Dimensions of Cosmic Scale Factor ##a(t)##

Click For Summary
SUMMARY

The discussion centers on the dimensions of the cosmic scale factor, denoted as ##a(t)##, in cosmology. It is established that ##a(t)## is dimensionless when defined in a metric where ##ds^{2}=dt^{2}+a(t)^{2}dx^{2}##, leading to the conclusion that ##[a(t)]=0##. The conversation also clarifies that while ##a(t)## is dimensionless, it can still be a function of time. Two conventions for the scale factor are discussed: one using ##a(t)## as dimensionless and normalized to 1 at the present time, and another using ##R(t)## with units of length, which relates to the curvature of the universe.

PREREQUISITES
  • Understanding of Hubble's parameter and its formula, ##\frac{\dot{a}}{a}##.
  • Familiarity with metric tensors in general relativity, specifically the form ##ds^{2}=dt^{2}+a(t)^{2}dx^{2}##.
  • Knowledge of natural units, particularly the implications of setting ##c=1##.
  • Concepts of curvature parameters in cosmology, including their implications for the universe's geometry.
NEXT STEPS
  • Explore the implications of different conventions for the cosmic scale factor, particularly the differences between ##a(t)## and ##R(t)##.
  • Study the relationship between curvature parameters and the geometry of the universe in cosmological models.
  • Investigate the role of natural units in theoretical physics and their impact on dimensional analysis.
  • Learn about the derivation and significance of Hubble's law in the context of expanding universe models.
USEFUL FOR

Physicists, cosmologists, and students of theoretical physics who are interested in the mathematical foundations of cosmology and the implications of scale factors in the universe's expansion.

AHSAN MUJTABA
Messages
87
Reaction score
4
TL;DR
I have confusion regarding the dimensions of the cosmic scale factor, ##a(t)##. I have read on the wiki that it is dimensionless, but I wonder about it because it is a function of time, t. I want to use its dimensions to prove the action as non-dimensional.
I know the formula for Hubble's parameter, ##\frac{\dot{a}}{a}##, but I cannot infer any dimension of ##a(t)## from it. Please guide me.
Thanks.
 
Space news on Phys.org
The dimension of ##a## depends on how you define it in the metric.
 
Orodruin said:
The dimension of ##a## depends on how you define it in the metric.
Would you please elaborate a little? Thanks.
 
Just check my work to find dimensions of ##a(t)##.
I have written the metric as,
##ds^{2}=dt^{2}+a(t)^{2}dx^{2}.##
Now, I am aware of the dimensions of the quantities as:
##ds^{2}=[L]^{2}##, ##dt^{2}=[L]^{2}##( I am defining it in terms of length by L=ct, taking c=1.) and ##dx^{2}=[L]^{2}##.
I need to define everything in terms of mass dimensions. I have ##\lambda=\frac{h}{mc}## and working in natural units, I can define the dimension of length in terms of mass as, ##[M]^{-1}.##
Now, the dimensions of time in terms of mass becomes, ##[M]##.
Now, incorporating these dimensions in the metric we get:
##1=1+a(t)^{2},##
##[a(t)]=0.##
So, from this approach, the cosmic scale factor is coming out to be a dimensionless quantity.
Is it a legal approach, please do have a look.
 
As you have defined it, ##a## is dimensionless, yes. That doesn't stop it being a function of time - for example, if a wave with frequency ##f## passes you then the number of complete cycles that have passed you since time zero is ##ft##. That's both dimensionless and a function of time.
 
  • Like
Likes AHSAN MUJTABA and PeroK
Just one little question, does defining length in terms of mass dimensions by using the relation ##L=ct## is legit or not? In natural units i.e. c=1, the time and length would have the same dimensions.
 
AHSAN MUJTABA said:
Just one little question, does defining length in terms of mass dimensions by using the relation ##L=ct## is legit or not? In natural units i.e. c=1, the time and length would have the same dimensions.
https://en.wikipedia.org/wiki/Geometrized_unit_system
 
AHSAN MUJTABA said:
Just one little question, does defining length in terms of mass dimensions by using the relation ##L=ct## is legit or not? In natural units i.e. c=1, the time and length would have the same dimensions.
That seems to me to be defining time in length units or vice versa. You need an additional choice that ##G=1## to get mass in the same units as length and time. I don't usually do it, and I recall Carroll recommending against it. It isn't wrong, though.
 
  • Like
Likes PeterDonis
According to this article, it is seen that ##L=ct## is right because to convert dimensions of time into length, we set c=1. Secondly, we know Compton's wavelength relation, and from that, we can have ##(mass)^{-1}## dimensions of both time and length.
 
  • #10
Ibix said:
As you have defined it, ##a## is dimensionless, yes. That doesn't stop it being a function of time - for example, if a wave with frequency ##f## passes you then the number of complete cycles that have passed you since time zero is ##ft##. That's both dimensionless and a function of time.
Yes, now I am clear about that. Thanks.
 
  • #11
To elaborate a little bit, there are two common conventions for the scale factor.

One, which usually uses ##a(t)## as its notation, has the scale factor dimensionless and set so that ##a(now) = 1##. With this notation, the curvature parameter ##k## is a real number with units of inverse length squared.

The second one, which usually uses ##R(t)## as its notation, has a scale factor with units of length. In this notation the curvature parameter ##k## is an integer value equal to either -1, 0, or 1, representing whether the universe is negatively-curved, flat, or positively-curved. This scale factor is the radius of curvature of the universe.

Please note the "usually" in the above: just because a source has one or the other doesn't mean that's the notation they're using.
 
  • Like
Likes AHSAN MUJTABA

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 53 ·
2
Replies
53
Views
7K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K