MHB Dirac Delta and Fourier Series

rannasquaer
Messages
6
Reaction score
0
A beam of length L with fixed ends, has a concentrated force P applied in the center exactly in L / 2.

In the differential equation:

\[ \frac{d^4y(x)}{dx^4}=\frac{1}{\text{EI}}q(x) \]

In which

\[ q(x)= P \delta(x-\frac{L}{2}) \]

P represents an infinitely concentrated charge distribution

The problem can be solved through developments in Fourier sine series, suppose that

\[ y(x)=\sum_{n=1}^{\infty} b_n \sin (\frac{n \pi x}{\text{L}}) \]

Demonstrate and explain step by step to obtain the equation below

\[ \delta(x-\frac{\text{L}}{2})= \frac{2}{\text{L}} \sum_{n=1}^{\infty} \sin (\frac{n \pi}{2}) \sin (\frac{n \pi x}{\text{L}}) \]
 
Mathematics news on Phys.org
Hi rannasquaer, welcome to MHB!

The Fourier sine series says that we can write an odd function $f(x)$ with period $L$ as:
$$f(x)=\sum_{n=1}^\infty B_n \sin\frac{n\pi x}L\quad\text{with}\quad B_n = \frac 2L\int_0^L f(x) \sin\frac{n\pi x}L\,dx \quad\quad (1)$$

Substitute $f(x)=\delta(x-\frac L2)$ to find:
\[ B_n = \frac 2L\int_0^L \delta\big(x-\frac L2\big) \sin\frac{n\pi x}L\,dx \]

To evaluate this, we use the property of the Dirac $\delta$ function that if $a<c<b$ then $\int_a^b \delta(x-c)g(x)\,dx = g(c)$.
So
\[ B_n = \frac 2L\int_0^L \delta\big(x-\frac L2\big) \sin\big(\frac{n\pi x}L\big)\,dx = \frac 2L\, \sin\big(\frac{n\pi}L\frac L2\big) = \frac 2L\, \sin \frac{n\pi}2\]

Substitute in $(1)$ and find:
\[ \delta\big(x-\frac L2\big) = \sum_{n=1}^\infty \frac 2L\, \sin \frac{n\pi}2 \sin\frac{n\pi x}L \]
 
Last edited:
Thank you so much, I was having trouble understanding what to use as f(x), I thought I should use q(x), and everything was going wrong.

Thank you!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top