Dirac Delta Function in an Ordinary Differential Equation

Click For Summary
SUMMARY

The discussion focuses on solving the ordinary differential equation (ODE) for a spring-mass system subjected to an impulse at time t = π/2, governed by the equation y'' + 9y = -3δ(t−π/2) with initial conditions y(0)=1 and y'(0)=0. The Laplace transform method is employed, resulting in L = (-3e-πs/2 + s) / (s² + 9). The inverse Laplace transform yields y = -3⋅H(t-π/2)cos(3(t+π/2)) + cos(3t), indicating the mass's motion post-impact. The textbook solution claims y = 0 for t > π/2, suggesting the mass comes to rest, which requires verification against initial conditions and impulse magnitude.

PREREQUISITES
  • Understanding of Laplace transforms, specifically L(y'') = s²L - sy(0) - y'(0)
  • Familiarity with the Heaviside function H(t)
  • Knowledge of inverse Laplace transforms and their applications in solving ODEs
  • Basic principles of simple harmonic motion in mechanical systems
NEXT STEPS
  • Study the properties of the Heaviside function and its role in piecewise functions
  • Learn about the application of the Laplace transform in solving initial value problems
  • Explore the concept of impulse in mechanical systems and its effect on motion
  • Investigate common mistakes in applying the inverse Laplace transform, particularly with exponential shifts
USEFUL FOR

Students and professionals in engineering, physics, and applied mathematics who are working with differential equations, particularly in the context of mechanical systems and impulse response analysis.

giveortake
Messages
2
Reaction score
0
Homework Statement
A Spring is attached to a spring is released from rest 1 m below the equilibrium position for the mass–spring system and begins to vibrate. After π/2 sec, the mass is struck by a hammer exerting an impulse on the mass. The system is governed by the symbolic initial value problem
y'' + 9y =−3δ(t−π/2) where y(0)=1 and y'(0)=0. What does the mass do after the hammer strike?
Relevant Equations
Laplace Transforms:

L(y'') = s[SUP]2[/SUP]L - sy(0) - y'(0)
L(y) = L
1.) Laplace transform of differential equation, where L is the Laplace transform of y:

s2L - sy(0) - y'(0) + 9L = -3e-πs/2

= s2L - s+ 9L = -3e-πs/2

2.) Solve for L

L = (-3e-πs/2 + s) / (s2 + 9)

3.) Solve for y by performing the inverse Laplace on L

Decompose L into 2 parts:
L = -3e-πs/2/(s2 + 9) + s/(s2 + 9)

The inverse Laplace of -3e-πs/2/(s2 + 9) is:

-3⋅H(t-π/2)cos(3(t+π/2))
Where H is the Heaviside function.

The inverse Laplace of s/(s2 + 9) is:

cos(3t)

Thus y = -3⋅H(t-π/2)cos(3(t+π/2)) + cos(3t)

The spring-mass system follows this equation for simple harmonic motion after the hammer strike.

NOTE: The answer according to the back of the textbook is:

y = 0 for t > π/2
 
Physics news on Phys.org
I hope you made some typos in the statement of the problem. Maybe you could fix that?

Anyway, the claim that y=0 for t>pi/2 would indicate that the mass sits there at y=0. That is, it seems like the answer in the back of the book is saying the mass comes to rest. You could check that by checking some things.
- Is the mass at y=0 when the hammer hits it? If not, then the y=0 solution is wrong.
- If it is at y=0, then what is the velocity of the mass before it gets hit?
- Is the impulse the correct amount to bring the mass to rest? If not, then the y=0 solution is wrong.

If those things come out correctly to have the mass come to rest, then you don't really need to solve the full differential equation, only the before-getting-hit part.
 
  • Like
Likes   Reactions: tnich
giveortake said:
L = -3e-πs/2/(s2 + 9) + s/(s2 + 9)
There are several substitutions you need to make to find the inverse LaPlace transform of this, and I think you have applied one of them incorrectly: ##sin(\omega t) \rightarrow \frac {\omega}{s^2+\omega^2}##.
 
giveortake said:
Homework Statement: A Spring is attached to a spring is released from rest 1 m below the equilibrium position for the mass–spring system and begins to vibrate. After π/2 sec, the mass is struck by a hammer exerting an impulse on the mass. The system is governed by the symbolic initial value problem
y'' + 9y =−3δ(t−π/2) where y(0)=1 and y'(0)=0. What does the mass do after the hammer strike?
Homework Equations: Laplace Transforms:

L(y'') = s2L - sy(0) - y'(0)
L(y) = L

1.) Laplace transform of differential equation, where L is the Laplace transform of y:

s2L - sy(0) - y'(0) + 9L = -3e-πs/2

= s2L - s+ 9L = -3e-πs/2

2.) Solve for L

L = (-3e-πs/2 + s) / (s2 + 9)

3.) Solve for y by performing the inverse Laplace on L

Decompose L into 2 parts:
L = -3e-πs/2/(s2 + 9) + s/(s2 + 9)
OK so far
The inverse Laplace of -3e-πs/2/(s2 + 9) is:

-3⋅H(t-π/2)cos(3(t+π/2))
2 mistakes here:
Whence the "3" coefficient? (already pointed out in a previous reply)
And look again at the cosine argument.
If you fix this term you will get zero for ## t \geq \pi/2 ##.
The key operation is ## e^{-bs} F(s) \leftrightarrow f(t-b)H(t-b) ## where ## f(t) \leftrightarrow F(s). ##
I think you used ##e^{-bs} F(s+b) \leftrightarrow f(t)H(t-b) ## which is not the same thing.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K