Engineering Dirac Delta Function in an Ordinary Differential Equation

AI Thread Summary
The discussion focuses on solving a differential equation using the Laplace transform, specifically for a spring-mass system subjected to an impulse. The Laplace transform is applied to the equation, leading to the expression for L, which is then decomposed to find the inverse Laplace transform. The resulting function y indicates that after the hammer strike, the mass behaves according to the derived equation, with a critical note that the textbook solution suggests y=0 for t>π/2, implying the mass comes to rest. The conversation emphasizes verifying initial conditions and impulse correctness to confirm the solution's validity.
giveortake
Messages
2
Reaction score
0
Homework Statement
A Spring is attached to a spring is released from rest 1 m below the equilibrium position for the mass–spring system and begins to vibrate. After π/2 sec, the mass is struck by a hammer exerting an impulse on the mass. The system is governed by the symbolic initial value problem
y'' + 9y =−3δ(t−π/2) where y(0)=1 and y'(0)=0. What does the mass do after the hammer strike?
Relevant Equations
Laplace Transforms:

L(y'') = s[SUP]2[/SUP]L - sy(0) - y'(0)
L(y) = L
1.) Laplace transform of differential equation, where L is the Laplace transform of y:

s2L - sy(0) - y'(0) + 9L = -3e-πs/2

= s2L - s+ 9L = -3e-πs/2

2.) Solve for L

L = (-3e-πs/2 + s) / (s2 + 9)

3.) Solve for y by performing the inverse Laplace on L

Decompose L into 2 parts:
L = -3e-πs/2/(s2 + 9) + s/(s2 + 9)

The inverse Laplace of -3e-πs/2/(s2 + 9) is:

-3⋅H(t-π/2)cos(3(t+π/2))
Where H is the Heaviside function.

The inverse Laplace of s/(s2 + 9) is:

cos(3t)

Thus y = -3⋅H(t-π/2)cos(3(t+π/2)) + cos(3t)

The spring-mass system follows this equation for simple harmonic motion after the hammer strike.

NOTE: The answer according to the back of the textbook is:

y = 0 for t > π/2
 
Physics news on Phys.org
I hope you made some typos in the statement of the problem. Maybe you could fix that?

Anyway, the claim that y=0 for t>pi/2 would indicate that the mass sits there at y=0. That is, it seems like the answer in the back of the book is saying the mass comes to rest. You could check that by checking some things.
- Is the mass at y=0 when the hammer hits it? If not, then the y=0 solution is wrong.
- If it is at y=0, then what is the velocity of the mass before it gets hit?
- Is the impulse the correct amount to bring the mass to rest? If not, then the y=0 solution is wrong.

If those things come out correctly to have the mass come to rest, then you don't really need to solve the full differential equation, only the before-getting-hit part.
 
  • Like
Likes tnich
giveortake said:
L = -3e-πs/2/(s2 + 9) + s/(s2 + 9)
There are several substitutions you need to make to find the inverse LaPlace transform of this, and I think you have applied one of them incorrectly: ##sin(\omega t) \rightarrow \frac {\omega}{s^2+\omega^2}##.
 
giveortake said:
Homework Statement: A Spring is attached to a spring is released from rest 1 m below the equilibrium position for the mass–spring system and begins to vibrate. After π/2 sec, the mass is struck by a hammer exerting an impulse on the mass. The system is governed by the symbolic initial value problem
y'' + 9y =−3δ(t−π/2) where y(0)=1 and y'(0)=0. What does the mass do after the hammer strike?
Homework Equations: Laplace Transforms:

L(y'') = s2L - sy(0) - y'(0)
L(y) = L

1.) Laplace transform of differential equation, where L is the Laplace transform of y:

s2L - sy(0) - y'(0) + 9L = -3e-πs/2

= s2L - s+ 9L = -3e-πs/2

2.) Solve for L

L = (-3e-πs/2 + s) / (s2 + 9)

3.) Solve for y by performing the inverse Laplace on L

Decompose L into 2 parts:
L = -3e-πs/2/(s2 + 9) + s/(s2 + 9)
OK so far
The inverse Laplace of -3e-πs/2/(s2 + 9) is:

-3⋅H(t-π/2)cos(3(t+π/2))
2 mistakes here:
Whence the "3" coefficient? (already pointed out in a previous reply)
And look again at the cosine argument.
If you fix this term you will get zero for ## t \geq \pi/2 ##.
The key operation is ## e^{-bs} F(s) \leftrightarrow f(t-b)H(t-b) ## where ## f(t) \leftrightarrow F(s). ##
I think you used ##e^{-bs} F(s+b) \leftrightarrow f(t)H(t-b) ## which is not the same thing.
 
Back
Top