Dirac Delta Function in an Ordinary Differential Equation

Click For Summary

Discussion Overview

The discussion revolves around the application of the Dirac delta function in an ordinary differential equation related to a spring-mass system. Participants explore the implications of the Laplace transform on the system's behavior after an impulse is applied, particularly focusing on the solution's validity and the physical interpretation of the results.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Homework-related

Main Points Raised

  • One participant presents a Laplace transform solution for the differential equation governing the spring-mass system, leading to a proposed solution for y involving a Heaviside function and cosine terms.
  • Another participant questions the correctness of the initial problem statement and the interpretation of the solution, suggesting that the mass may not come to rest at y=0 after the hammer strike.
  • A third participant points out potential errors in the inverse Laplace transform process, specifically regarding substitutions and the application of the exponential shift theorem.
  • Participants discuss the implications of the Dirac delta function in the context of impulse and its effect on the system's motion.

Areas of Agreement / Disagreement

There is no consensus on the correctness of the proposed solution or the interpretation of the results. Multiple competing views remain regarding the application of the Laplace transform and the physical behavior of the mass after the impulse is applied.

Contextual Notes

Participants note potential mistakes in the application of the inverse Laplace transform and the interpretation of the system's behavior, indicating that assumptions about the initial conditions and the nature of the impulse may affect the conclusions drawn.

giveortake
Messages
2
Reaction score
0
Homework Statement
A Spring is attached to a spring is released from rest 1 m below the equilibrium position for the mass–spring system and begins to vibrate. After π/2 sec, the mass is struck by a hammer exerting an impulse on the mass. The system is governed by the symbolic initial value problem
y'' + 9y =−3δ(t−π/2) where y(0)=1 and y'(0)=0. What does the mass do after the hammer strike?
Relevant Equations
Laplace Transforms:

L(y'') = s[SUP]2[/SUP]L - sy(0) - y'(0)
L(y) = L
1.) Laplace transform of differential equation, where L is the Laplace transform of y:

s2L - sy(0) - y'(0) + 9L = -3e-πs/2

= s2L - s+ 9L = -3e-πs/2

2.) Solve for L

L = (-3e-πs/2 + s) / (s2 + 9)

3.) Solve for y by performing the inverse Laplace on L

Decompose L into 2 parts:
L = -3e-πs/2/(s2 + 9) + s/(s2 + 9)

The inverse Laplace of -3e-πs/2/(s2 + 9) is:

-3⋅H(t-π/2)cos(3(t+π/2))
Where H is the Heaviside function.

The inverse Laplace of s/(s2 + 9) is:

cos(3t)

Thus y = -3⋅H(t-π/2)cos(3(t+π/2)) + cos(3t)

The spring-mass system follows this equation for simple harmonic motion after the hammer strike.

NOTE: The answer according to the back of the textbook is:

y = 0 for t > π/2
 
Physics news on Phys.org
I hope you made some typos in the statement of the problem. Maybe you could fix that?

Anyway, the claim that y=0 for t>pi/2 would indicate that the mass sits there at y=0. That is, it seems like the answer in the back of the book is saying the mass comes to rest. You could check that by checking some things.
- Is the mass at y=0 when the hammer hits it? If not, then the y=0 solution is wrong.
- If it is at y=0, then what is the velocity of the mass before it gets hit?
- Is the impulse the correct amount to bring the mass to rest? If not, then the y=0 solution is wrong.

If those things come out correctly to have the mass come to rest, then you don't really need to solve the full differential equation, only the before-getting-hit part.
 
  • Like
Likes   Reactions: tnich
giveortake said:
L = -3e-πs/2/(s2 + 9) + s/(s2 + 9)
There are several substitutions you need to make to find the inverse LaPlace transform of this, and I think you have applied one of them incorrectly: ##sin(\omega t) \rightarrow \frac {\omega}{s^2+\omega^2}##.
 
giveortake said:
Homework Statement: A Spring is attached to a spring is released from rest 1 m below the equilibrium position for the mass–spring system and begins to vibrate. After π/2 sec, the mass is struck by a hammer exerting an impulse on the mass. The system is governed by the symbolic initial value problem
y'' + 9y =−3δ(t−π/2) where y(0)=1 and y'(0)=0. What does the mass do after the hammer strike?
Homework Equations: Laplace Transforms:

L(y'') = s2L - sy(0) - y'(0)
L(y) = L

1.) Laplace transform of differential equation, where L is the Laplace transform of y:

s2L - sy(0) - y'(0) + 9L = -3e-πs/2

= s2L - s+ 9L = -3e-πs/2

2.) Solve for L

L = (-3e-πs/2 + s) / (s2 + 9)

3.) Solve for y by performing the inverse Laplace on L

Decompose L into 2 parts:
L = -3e-πs/2/(s2 + 9) + s/(s2 + 9)
OK so far
The inverse Laplace of -3e-πs/2/(s2 + 9) is:

-3⋅H(t-π/2)cos(3(t+π/2))
2 mistakes here:
Whence the "3" coefficient? (already pointed out in a previous reply)
And look again at the cosine argument.
If you fix this term you will get zero for ## t \geq \pi/2 ##.
The key operation is ## e^{-bs} F(s) \leftrightarrow f(t-b)H(t-b) ## where ## f(t) \leftrightarrow F(s). ##
I think you used ##e^{-bs} F(s+b) \leftrightarrow f(t)H(t-b) ## which is not the same thing.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K