Jncik
- 95
- 0
Homework Statement
find
\int_{-\infty}^{+\infty} x(t) \delta (\beta t - t_{0}) dt
for x(t) = e^{a t} u(t)
there is no information conserning a, β, or t_{0}...
The Attempt at a Solution
assuming that t_{0} is a constant\int_{-\infty}^{+\infty} x(t) \delta (\beta t - t_{0}) dt = <br /> \int_{-\infty}^{+\infty} e^{at}u(t) \delta (\beta t - t_{0}) dt <br /> = \int_{0}^{+\infty} e^{at} \delta (\beta t - t_{0}) dt <br /> = \int_{0}^{+\infty} e^{\frac{a}{b}t_{0}} dt<br /> = +\infty<br />