Find FT of Function: Solution & Explanation

  • Thread starter LCSphysicist
  • Start date
  • Tags
    Function
In summary, the integral of the function H(f) can be simplified to k times the delta function divided by 2. However, this simplified equation does not hold true when taking the inverse Fourier transform, as something is lost in the simplification process. This can be seen by comparing it to the integral of the function g(x) multiplied by the exponential function, which is not equal to g(0).
  • #1
LCSphysicist
646
162
Homework Statement
I will post a print
Relevant Equations
.
1620972236138.png

I need to find the FT of this function. Here is my attempt:

$$H(f) = \int_{0}^{\infty} ke^{-2 \pi i f t}dt$$

We know that ##\delta(t) = \int_{-\infty}^{\infty} e^{2 \pi i f t} df##, the part with sin in this integration vanish, so that, and knowing that cos is a even function, we can write ##\delta(t) = \int_{-\infty}^{\infty} e^{2 \pi i f t} df = \int_{-\infty}^{\infty} e^{-2 \pi i f t} df##.

Now, for example, ##\int_{-a}^{a}x^2 = 2\int_{0}^{a}x^2##. So we can write the delta above as ##\delta(t) = \int_{\infty}^{\infty} e^{-2 \pi i f t} df = 2\int_{0}^{\infty} e^{-2 \pi i f t} df##.

Putting this in the first formula $$H(f) = \int_{0}^{\infty} ke^{-2 \pi i f t}dt$$:

##H(f) = \int_{0}^{\infty} ke^{-2 \pi i f t} dt = k \delta(f) /2##

This make sense or you? Is it right?
 
  • Skeptical
Likes Delta2
Physics news on Phys.org
  • #2
Herculi said:
Is it right?
One possible check is to do the inverse FT. That would give you a constant function, so: no !
Something got lost on the way...

##\ ##
 
  • Like
Likes Delta2
  • #3
Herculi said:
Now, for example, ##\int_{-a}^{a}x^2 = 2\int_{0}^{a}x^2##. So we can write the delta above as ##\delta(t) = \int_{\infty}^{\infty} e^{-2 \pi i f t} df = 2\int_{0}^{\infty} e^{-2 \pi i f t} df##.

Is
$$
\int_{-a}^a x\, dx = 2 \int_0^a x\, dx?
$$
 
  • Like
Likes Delta2
  • #4
I think your confusion is they ##\delta(t)## is a thing that needs to be integrated again in order to get the function value. So

$$\int_{-\infty}^{\infty}g(x) \int_{-\infty}^{\infty} e^{2\pi i x t} dt dx= g(0)$$

But
$$\int_{-\infty}^{\infty}g(x) e^{2\pi i x t} dx \neq g(0)$$

This latter integral is just a multiple of the inverse Fourier transform of g.
 
Back
Top