MHB Direct product of abelian groups. Isomorphism.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $A,B,C$ be finite abelian groups. Assume that $A\times B\cong A\times C$. Show that $B\cong C$.

I observed that $(A\times B)/(A\times\{e\})\cong B$ and $(A\times C)/(A\times\{e\})\cong C$.

So I need to show that $(A\times B)/(A\times\{e\})\cong (A\times C)/(A\times\{e\})$.

Let $\psi:A\times B\rightarrow A\times C$ be an isomorphism.

Define $\phi:A\times B \rightarrow (A\times C)/(A\times\{e\})$ as $\phi(a,b)=(\psi(a,b))(A\times\{e\})$.

If I could show that $\ker \phi=A\times\{e\}$ then I'd be done.

For that I need $\psi(a,e)\in A\times\{e\}$ for all $a\in A$, which I am unable to show and this might not even be true.

Please help.
 
Physics news on Phys.org
i don't have an answer, but i can tell you your approach is doomed.

let A = B = C = Z2.

we have the automorphism:

(1,0)-->(1,1)
(0,1)-->(1,0)

note that is is NOT true that the image of Z2x{0} is Z2x{0}, it is:

{(0,0),(0,1)}.

i feel that the assumption that G is finite abelian has to be used in some essential way, and your approach does not do that.
 
Opalg said:
I am no expert on group theory, but my feeling is that maybe you need to use the structure theorem for finite abelian groups for this problem.
I never thoroughly read he structure theorem. So I think now is the time to do that.
 
Deveno said:
i don't have an answer, but i can tell you your approach is doomed.

let A = B = C = Z2.

we have the automorphism:

(1,0)-->(1,1)
(0,1)-->(1,0)

note that is is NOT true that the image of Z2x{0} is Z2x{0}, it is:

{(0,0),(0,1)}.

i feel that the assumption that G is finite abelian has to be used in some essential way, and your approach does not do that.
Thank you.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top