- #1

- 753

- 15

[tex]

\nabla _{\vec{p}} \vec{p} = (\nabla_a \vec{p} ) p^a

=< (\nabla_a p^0 ) p^a, (\nabla_a p^1 ) p^a , (\nabla_a p^2 ) p^a, (\nabla_a p^3 ) p^a >

[/tex]

(where the a's are summed from 0 to 3)

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter snoopies622
- Start date

- #1

- 753

- 15

[tex]

\nabla _{\vec{p}} \vec{p} = (\nabla_a \vec{p} ) p^a

=< (\nabla_a p^0 ) p^a, (\nabla_a p^1 ) p^a , (\nabla_a p^2 ) p^a, (\nabla_a p^3 ) p^a >

[/tex]

(where the a's are summed from 0 to 3)

- #2

atyy

Science Advisor

- 14,398

- 2,642

http://en.wikipedia.org/wiki/Covariant_derivative

- #3

- 753

- 15

The covariant derivative of a type (a,b) tensor is a type (a,b+1) tensor, but the

I was wondering about this because somewhere in Schutz's

- #4

atyy

Science Advisor

- 14,398

- 2,642

Expand

[tex]

\nabla _{\bold{u}} \bold{v}

= \nabla _{{u^i}\bold{e_i}} \bold{v}

={u^i} \nabla _{i} \bold{v}

[/tex]

Expand

[tex]

{u^i} \nabla _{i} \bold{v}

={u^i} \nabla _{i} v^j\bold{e_j}

={u^i} (v^j\nabla _{i} \bold{e_j}+\bold{e_j}\nabla _{i} v^j})

[/tex]

Use definition of Christoffel symbols and covariant derivative of a scalar field:

[tex]

\begin{equation*}

\begin{split}

\{}{u^i} (v^j\nabla _{i} \bold{e_j}+\bold{e_j}\nabla _{i} v^j}) \\

&={u^i} (v^j\Gamma^{k}_{ij} \bold{e_k}+\bold{e_j}{\frac {\partial v^j}{\partial x_i}}) \\

&=({u^i}v^j\Gamma^{k}_{ij} \bold{e_k}+{u^i}\bold{e_j}{\frac {\partial v^j}{\partial x_i}}) \\

&=({u^i}v^j\Gamma^{k}_{ij} \bold{e_k}+{u^i}\bold{e_k}{\frac {\partial v^k}{\partial x_i}}) \\

&=({u^i}v^j\Gamma^{k}_{ij} \bold+{u^i}{\frac {\partial v^k}{\partial x_i}}){\bold{e_k}}

\end{equation*}

\end{split}

[/tex]

For Schutz's equation, let the unknown coordinates of the curve be [tex]x_i=x_i(\tau)[/tex].

Set [tex]u^i=v^i=({\frac {dx(\tau)}{d\tau}})^i={\frac {dx{_i}(\tau)}{d\tau}}[/tex] as the tangent vector along the curve.

For a geodesic, set the covariant derivative of the tangent vector along the curve to zero (ie. no acceleration):

[tex]{\frac {dx{_i}}{d\tau}}{\frac {dx{_j}}{d\tau}}\Gamma^{k}_{ij} \bold+{\frac {dx{_i}}{d\tau}}({\frac {d^2x{_k}}{d\tau^2}}{\frac {d\tau}{dx{_i}}})}={\frac {dx{_i}}{d\tau}}{\frac {dx{_j}}{d\tau}}\Gamma^{k}_{ij} \bold+{\frac {d^2x{_k}}{d\tau^2}}}=0[/tex]

We can also get the same differential equation by requiring the integrated proper time along the curve to be extremal. A given metric fixes the Christoffel symbols. Solving the differential equation will give you the coordinates of a geodesic [tex]x_i=x_i(\tau)[/tex].

- #5

- 753

- 15

Need a day to process...

- #6

- 753

- 15

[tex]

\nabla _ {\vec U} \vec U = 0 \Rightarrow [/tex] "in component notation" [tex] U^{\beta} U^{\alpha} _{;\beta}=...=0[/tex]

I guess in general it pays to read page 166 before page 186.

Share: