Discharge Coefficient of Valve equation

Click For Summary
SUMMARY

The discussion centers around the Discharge Coefficient (Cv) of a valve as described in the book "Advanced Water Distribution Modeling and Management." Participants argue that the term V^2 in the equation Cv=V/[(2gh+V^2)^.5] is unnecessary, proposing instead Cv=V/[(2gh)^.5]. They support their claims by referencing the equivalence of two equations: Q=Cv(2gh)^0.5*3.14D^2/4 and Q=CfCvD^2(P)^0.5. The debate highlights the importance of understanding the context of each variable and the physical setup involved in these equations.

PREREQUISITES
  • Understanding of fluid dynamics principles
  • Familiarity with the Discharge Coefficient (Cv)
  • Knowledge of volumetric flow rate (Q) and its relation to valve performance
  • Ability to interpret equations involving gravitational head (h) and velocity (V)
NEXT STEPS
  • Study the derivation of the Discharge Coefficient (Cv) in fluid mechanics
  • Learn about the application of Bernoulli's equation in valve flow analysis
  • Examine case studies on valve performance in water distribution systems
  • Research the impact of cross-sectional area on flow rates in hydraulic systems
USEFUL FOR

Engineers, hydrologists, and water resource managers involved in fluid dynamics and valve performance analysis will benefit from this discussion.

Mikealvarado100
Messages
52
Reaction score
0
I have a problem with Discharge Coefficient of Valve equation which is described in book 'advanced water distribution modeling and management'
let me say:

I think the expression V^2 in Discharge Equation (P. 618 of the book mentioned) is extra and the equation must be changed to:
I) Cv=V/[(2gh)^.5]
because other equation for Cv is:
II) Q=Cv (2gh)^0.5 3.14D^2/4
and these two equations are equal.
Additionally the equation P. 402 (equation 9.3) confirms my thought.
What is your idea?
thanx
 
Engineering news on Phys.org
So as not to restrict potential respondents to those who posssess a copy of the book, I suggest you quote the whole of the equation in question and explain the context in which each equation applies.
One possibility that occurs to me is that the v is a change in velocity of the flow before it descends height h to the valve. This might apply to the context of one equation but not the other.
 
haruspex
One equation says that Cv=V/[(2gh+V^2)^.5].
According to another equation: Q=Cv (2gh)^0.5*3.14*D^2/4
These two equations must be equal. Therefore insert Cv from second equation in fist equation. Then you will see the sentence V^2 in first equation is extra. Also you can compare it with another equation: Q=Cf Cv D^2 (P)^0.5. which Cf=constant.
In both of them you can see that V^2 is extra in first equation. Is not it?
Thanx
 
Mikealvarado100 said:
haruspex
One equation says that Cv=V/[(2gh+V^2)^.5].
According to another equation: Q=Cv (2gh)^0.5*3.14*D^2/4
These two equations must be equal. Therefore insert Cv from second equation in fist equation. Then you will see the sentence V^2 in first equation is extra. Also you can compare it with another equation: Q=Cf Cv D^2 (P)^0.5. which Cf=constant.
In both of them you can see that V^2 is extra in first equation. Is not it?
Thanx
As I posted, you need to explain the context: the physical set-up and what each variable means within that set-up.
It is not immediately clear that the two equations are in conflict. One of them involves Q (a volumetric flow rate) and a cross sectional area, the other does not.
Are you quite sure the two Vs in the first equation above are the same? It seems to me they should represent two different velocities.
Can you post an image of the text and any diagrams?
 
Hi
Cv is Discharge Coefficient of a valve which defined the relation between Q and H.
Have a look at image attached. have a look at below page too:
http://www.valvias.com/discharge-coefficient.php
No. Both V are velocity of flow.
Insert Cv from second equation into fist equation and make it simple. It is very easy to do. Then you can see V^2 is extra.
Another equation for Cv is Q=Cf Cv D^2 (P)^0.5. which Cf is constant. You can use this equation too be sure of what I believe.

http://Hi Cv is Discharge Coefficient of a valve which defined the relation between Q and H. Have a look at image attached. have a look at below page too: http://www.valvias.com/discharge-coefficient.php[/PLAIN] http://s6.uplod.ir/i/00777/ofsxrg0ftfbe.jpg
 
Last edited by a moderator:
Mikealvarado100 said:
Hi
Cv is Discharge Coefficient of a valve which defined the relation between Q and H.
Have a look at image attached. have a look at below page too:
http://www.valvias.com/discharge-coefficient.php
No. Both V are velocity of flow.
Insert Cv from second equation into fist equation and make it simple. It is very easy to do. Then you can see V^2 is extra.
Another equation for Cv is Q=Cf Cv D^2 (P)^0.5. which Cf is constant. You can use this equation too be sure of what I believe.

http://Hi Cv is Discharge Coefficient of a valve which defined the relation between Q and H. Have a look at image attached. have a look at below page too: http://www.valvias.com/discharge-coefficient.php[/PLAIN] http://s6.uplod.ir/i/00777/ofsxrg0ftfbe.jpg
The equation without the V2 is an approximation that is valid where the cross sectional area of the reservoir is much greater than that of the valve. In this case, we can ignore the velocity with which the level descends in the reservoir.
The equation with the V2 is correct if that V is taken as referring to the rate of descent of the level in the reservoir. It looks to me as though the distinction between the two velocities has been lost somewhere in copying from an original source.
 
Last edited by a moderator:

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 24 ·
Replies
24
Views
7K
  • · Replies 1 ·
Replies
1
Views
1K