Ken G
Gold Member
- 4,949
- 573
I would say you can claim that when the mechanism works, when one mechanism emerges from all the possibilities because it is well constrained and absent of any difficulties.bapowell said:First, there is a mechanism by which inflation can be achieved within GR, and so we already have more than a mere phenomenon.
Gauge theories are a unifying way of thinking about a wide class of behavior, and spontaneous symmetry breaking likewise-- it is a unifying principle. These ideas employ scalar potentials for only one reason, AFAIK-- because it is the simplest way to do it. That's it, that's the reason-- not because there is a shred of evidence that approach should work. Now, of course we would always start with the simplest approach, that's looking for the keys under the streetlight first. But it's still no reason to expect it will work, or that it is the "right physics", until there is some much better reason to expect that, based on some success that simply has not yet appeared. The keys have not been found yet, so the search under the streetlight continues, until either the keys are found, or the search moves on to somewhere more difficult. That is how we look for keys, but we don't need to pretend it is some better guided process than that!This mechanism does make use of hypothetical scalar fields, which you claim is ad hoc. (So, I must ask, are you equally skeptical of gauge theories and spontaneous symmetry breaking?)
It's not important to me to be able to label inflation "ad hoc", I'm perfectly happy with "currently speculative details of how it works." I hope inflation works out simply, why wouldn't I. I'm just saying we should not kid ourselves that we have good reason to expect a scalar potential mechanism to turn out to be the correct description of the phenomenon of inflation.Keep in mind that the stress-energy that drives inflation need not be a fundamental scalar, it only needs to have an effective equation of state that satisfies w < -1/3. Yes, we don't know precisely what the source of this stress-energy is, but that does not demote inflation to a mere ad hoc phenomenon.
Yes, that's the "phenomenon" we are talking about. The question is, what is a good model of whatever mechanism made that happen?Second, I would argue that there is a wealth of data supporting an early inflationary epoch.
I'm saying it is appropriate to separate the phenomenon of inflation, which is simply the statement that the universe expanded by the factor X at epoch Y, from any physical theories or mechanisms that can actually accomplish that. Once making that distinction, we can then look for what observations we have that support the phenomenon, and what observations support the mechanism. I don't think that distinction has been clearly made, because the list of successes you cite all sound to me like they stem from the phenomenon itself-- the mechanism is still not accomplishing any of these independent successes, all it is doing is the one thing it was built to do-- to give the phenomenon.You claimed earlier than inflation makes not testable predictions beyond that which it was constructed to explain. I'm not sure I agree; first, what would you say inflation was constructed to explain? Flatness? Lack of monopoles? Resolve the horizon problem? I suppose that question can only be answered by learning the intent of the scientists who built the theory. I would say that even if we claim these were the prescribed goals of the theory, the discovery that inflation could generate the seeds of large scale structure was certainly not apparent at its conception.
Such a mechanism is not unifying anything, it's not a principle, until it can point to its own successes related to the mechanism independent from the basic phenomenon it is built to produce. Things like reheating and so forth could be examples of the mechanism working, beyond just the phenomenon, but these are exactly the kinds of details that are still being thrashed out, and remain unclear as to whether or not they are going to work. That's the natural state of affairs when a theory is being built, we don't know if we have the right construction to get something that works, so it's fine to try-- but we needn't pretend that we know we have a good mechanism just because we know we have a good phenomenon. That's not bashing the noble effort to look under the streetlight, it's just being realistic about it. Maybe you're right that if I knew better all the things that scalar potentials are doing for us, I'd be more inclined to see that approach to inflation as a unifying principle. But it starts to sound a bit like string theory, which I am also assured is doing wonderful things for our understanding, except that it hasn't really delivered what it claimed it would.
That's two hypotheses, one the phenomenon and one the mechanism, and we must not conflate the successes of each. They are important to keep separate.So, we have a hypothesis: that a period of exponential expansion took place in the early universe, driven by a source of stress-energy with the quantum numbers of the vacuum.
OK, now we are indeed talking about the mechanism, but are those predictions unique to the scalar potential approach, or are those behaviors endemic to a wide class of approaches? You say we can "effectively model" the inflation with a scalar potential, but if that is true, why are there so many different ways to do it, each with their own issues? How can we have a unifying principle here, if we cannot even identify which principle is the right one? I think the jury is still out on just how effective that approach can be judged, but those on the inside of the effort might disagree.But there are also observations that address that latter part of the hypothesis -- that a source with the quantum numbers of the vacuum drove the expansion. Such a source can be effectively modeled as a scalar field. We know certain facts about this field: it must have a potential energy that both supports inflation and ends it. We know it must have a shape that supports a sufficient amount of inflation. In its simplest form consistent with these requirements, it also makes predictions: namely, that the density perturbations will be adiabatic, Gaussian, and nearly scale invariant.
Then by all means, do what can be done! But until it is done, how do we know what can, or cannot, be done? I never said it's a bad idea, I just said it is speculative as to whether or not it is really going to fulfill its promise. And there's nothing wrong with that, new theory making is speculative, that's just what it is-- but why sell it as something more?And from this approach, I can discover, by observations of the observable universe alone, whether the potential that drove inflation in our Hubble patch is operative elsewhere in the universe. It doesn't matter that I don't know how exactly the inflaton arises from supergravity or some other theory. The data, together a suitable application of Occam's razor, are sufficient.
That particular tack was specifically about the geometry of the universe beyond what we can infer from observations. I'd say it's already pretty clear, whether or not we ever detect any curvature, that the curvature is not going to be enough to constrain the geometry of the rest of the universe without wholesale extrapolation. On what basis can the shape of a nose be extrapolated to the shape of a head? The cosmological principle is not a principle of extrapolation or constraint beyond what we can observationally falsify, it is simply a modeling principle in the domain of what we can.And I must caveat this discussion by saying that I am not a proponent of eternal inflation or of multiverse theories per se; I have no vested interest in their veracity. But I think it is too constrictive to maintain your tact that unless it is strictly observed that it has no place in science. Many things that belong in mainstream science have not been strictly observed but only inferred or implied by the strict consistency of theories that have been supported by other observations.
Edit: but to clarify, I don't see myself as in any position to pass judgment on inflation to people who do it, I'm just saying that a lot of rather grandiose claims get made about inflation but a lot of them seem to come with a rather large portion of faith. It behooves us to be realistic about what we have a right to expect from our theories, and what we might have to accept is more difficult than we'd like! None of this is in any way an attempt to discredit inflation as a useful research direction.
Last edited: