Calculating Displacement on a Spring: Common Mistakes and Troubleshooting Tips

  • Thread starter Thread starter Sam
  • Start date Start date
  • Tags Tags
    Displacement
Click For Summary
The discussion revolves around calculating the displacement of a mass on a spring after being pulled and released. The initial calculation for the spring constant (k) was incorrect due to a miscalculation, as it should be 49.05 N/m instead of 4.905. The user initially used the wrong units for displacement when applying Hooke's Law, which led to incorrect results. After correcting the calculations and using the appropriate values, the final displacement after 0.4 seconds was determined to be approximately -7.69 cm. The thread highlights the importance of unit consistency and accurate calculations in physics problems.
Sam
Messages
14
Reaction score
0
Problem:

a 0.28 kg mass is suspended on a spring which stretches a distance of 5.6 cm. The mass is then pulled down an additional distance of 14 cm and released. What is the displacement from the equilibrium position with the mass attached (in cm) after 0.4 seconds? Take up to be positive and use g = 9.81 m/s^2

Ok, I have done the following and it's not correct:

This is how I tried to solve...

1. Find k, the spring constant F = kx (Hooke's Law).
Since F = mg, then k = mg/x = 4.905000

2. Find the natural frequency, omega = (k/m)^1/2.
Omega = 13.23550 radians/sec = 2.106495 Hz.

Since energy in the system is conserved, the amplitude of the oscillation is just +/-14 cm centered about the resting deflection of -5.6 cm.

At t = 0 the things starts out fully deflected (i.e., at the peak of the sinusoidal curve), so the equation of the motion would be:
x(t) = -0.056 - 0.14*cos(1.323550*t)
x(0.4) = -0.1329355 m

What did I do wrong? Please help.

Thank you!
 
Physics news on Phys.org
k is 49.05 N/m not 4.905.


You used x= 5.6 cm when, since you used g= 9.801 m/s2,
you should have used 0.056 meters.
 
Still isn't coming out

I then came up with -13.29355 m

That is still incorrect.

Sorry... frustrated.
 
I figured it out...

-14*cos(13.2355042*.4) = -7.69

Thanks.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
6
Views
958
Replies
2
Views
797
Replies
6
Views
3K
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
26
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K