Lily@pie
- 108
- 0
Homework Statement
{ E }_{ 1 }:=\{ \left( -\infty ,x \right) :x\in \Re \}
{ E }_{ 2 }:=\{ \left\{ x \right\} :x\in \Re \}
Prove \sigma \left( { E }_{ 1 } \right) =\sigma \left( { E }_{ 2 } \right)
Homework Equations
I know { E }_{ 1 } generates the Borel field
(i.e.) \sigma \left( { E }_{ 1 } \right)=B(ℝ)
The Attempt at a Solution
I know this is wrong as \sigma \left( { E }_{ 2 } \right) \varsubsetneqq \sigma \left( { E }_{ 1 } \right)
Hence my attempt is assume \sigma \left( { E }_{ 1 } \right) \subseteq \sigma \left( { E }_{ 2 } \right)
Let F \in σ(E_{1}) be a non-empty set
As F \in E_{1} \Rightarrow F \in σ(E_{1})
When F \in E_{1}, F = (-\infty, x) for some x \in ℝ
I want to prove that for some x \in ℝ F = (-\infty, x) \notin E_{2}, which means F = (-\infty, x) \notin σ(E_{2}).
It is kind of obvious to me as -∞ \notin ℝ, and x \in ℝ implies that (-\infty, x) cannot be generated by a countable union of singletons.
Hence \sigma \left( { E }_{ 1 } \right) \subseteq \sigma \left( { E }_{ 2 } \right) must be wrong.
But I'm not sure if this statement is strong enough.
Thanks!