I Distance between two light pulses

member 743765
If a source emits a light pulse then waited one second and sent another pulse does the distance between the two pulses remain constant ? If yes is that mean their relative speed is zero? But why when we use lorentz transformation their relative speeds gives us zero over zero but if they travel in opposite directions their relative speed is c which agrees with special relativity?
 
Physics news on Phys.org
phyahmad said:
If a source emits a light pulse then waited one second and sent another pulse does the distance between the two pulses remain constant ?
Yes, assuming they're going in the same direction.
phyahmad said:
If yes is that mean their relative speed is zero?
No. It means that the difference in their coordinate velocities in your chosen frame is zero, which means that it will be zero in all frames. I usually call this quantity "closing rate" or "separation rate", although I don't think there's a universally accepted term.

The relative velocity of two objects is the velocity measured by one of the other in the rest frame of the first one. Light does not have a rest frame, so "velocity relative to light" isn't defined.

Note that relative velocity and separation rate are always equal in Newtonian physics, but not relativity.
phyahmad said:
But why when we use lorentz transformation their relative speeds gives us zero over zero but if they travel in opposite directions their relative speed is c which agrees with special relativity?
Lorentz transforms to a frame with speed ##v=\pm c## are not defined. Thus derived formulae such as the velocity transform (which is what I think you are using here) are not valid. That's why you get contradictory answers when you plug in ##+c## and ##-c##.
 
Last edited:
  • Like
Likes Dale and member 743765
phyahmad said:
But why when we use lorentz transformation their relative speeds gives us zero over zero but if they travel in opposite directions their relative speed is c which agrees with special relativity?
It should be undefined regardless of the direction. Light doesn’t have an inertial rest frame. You may want to check your math with the Lorentz transform for the opposite direction case
 
  • Like
Likes member 743765
Ibix said:
Yes, assuming they're going in the same direction.
And that we are in flat spacetime (i.e., no gravitating masses are present) and are using an inertial frame.
 
phyahmad said:
But why when we use lorentz transformation their relative speeds gives us zero over zero but if they travel in opposite directions their relative speed is c which agrees with special relativity?
To follow up on this. The Lorentz transform to an inertial frame moving at velocity ##v## with respect to the unprimed inertial frame is $$ct'=\frac{c t- v x/c}{\sqrt{1-v^2/c^2}}$$$$x'=\frac{x-vt}{\sqrt{1-v^2/c^2}}$$ For an object traveling at velocity ##u## in the unprimed frame we get ##x=ut## which gives $$ct'=\frac{c t- v u t/c}{\sqrt{1-v^2/c^2}}$$$$x'=\frac{u t-vt}{\sqrt{1-v^2/c^2}}$$

So, for the "perspective of light" we would have ##v=c## which gives $$ct'=\frac{c t- u t}{\sqrt{1-c^2/c^2}}=\frac{c t- u t}{0}=undefined$$$$x'=\frac{u t-ct}{\sqrt{1-c^2/c^2}}=\frac{u t-ct}{0}=undefined$$ Regardless of ##u##
 
  • Like
Likes PeroK and member 743765
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top