Distance travelled by a car considering only air friction?

Click For Summary
The discussion centers on calculating the distance a 3-ton car would travel at an initial speed of 17 km/h, considering only air friction. The initial calculation using the formula Vf² = Vi² + 2·a·d yielded a distance of 22.84 meters, which participants questioned as too low. It was clarified that air resistance is not constant and depends on velocity, making the initial formula inappropriate for this scenario. Participants emphasized the need to consider the variable nature of air friction when calculating distance, suggesting a more complex approach involving integrals. Ultimately, the conversation highlights the importance of accurately accounting for changing forces in physics calculations.
Suekdccia
Messages
352
Reaction score
30
Moved from the technical forums to the schoolwork forums.
TL;DR Summary: Distance traveled by a car considering only air friction?

How much distance would a 3-ton car travel if its initial speed was 17 km/h and we only take into account air's friction? (Assume that the car has an airfoil-like shape, so that the resistance against the air is very low)

I tried to calculate this with the formula Vf² = Vi² + 2·a·d (taking as 0.05 the coefficient of friction of the airfoil-like car against the air) and the resulting distance is 22,84 meters, but it seems too low to me. Am I messing up with something?
 
Physics news on Phys.org
Suekdccia said:
I tried to calculate this with the formula Vf² = Vi² + 2·a·d (taking as 0.05 the coefficient of friction of the airfoil-like car against the air)
Air resistance is not like friction, it depends on the velocity. What research have you done into solving problems that involve air resistance? Wikipedia might be a good place to start...

Update with a link -- https://en.wikipedia.org/wiki/Drag_(physics)
 
  • Like
Likes topsquark and Lnewqban
You should not use that formula because acceleration is not constant in your case.
Its value will be very high when velocity of the car is still high, but that value will progresively tend to zero at a square ratio as the velocity is degraded by air drag.
 
  • Like
Likes topsquark and berkeman
Suekdccia said:
I tried to calculate this with the formula Vf² = Vi² + 2·a·d (taking as 0.05 the coefficient of friction of the airfoil-like car against the air)
Solving that formula for d gives me about 17 meters.

Suekdccia said:
and the resulting distance is 22,84 meters, but it seems too low to me. Am I messing up with something?
Our numbers do not agree. Yes, in addition to using the wrong formula, you seem to be messing something up. Please show your work.
 
Here is how you arrive at the equation you used:

The work done ##W## is defined as:
$$W = \int Fdx$$
Knowing that ##F=ma##, the work done based on acceleration is:
$$W= \int madx$$
If we want to know the work based on velocity alone:
$$W = \int madx = \int m\frac{dv}{dt}dx = \int m\frac{dx}{dt}dv = \int mvdv$$
Both equations should give the same amount of work, so:
$$\int_{v_i}^{v_f} mvdv = \int_{x_i}^{x_f} madx$$
$$\frac{1}{2}m(v_f^2 - v_i^2) = ma(x_f - x_i)$$
$$v_f^2 = v_i^2 + 2a(x_f - x_i)$$
Which is the equation you used. This assumes that ##F = ma##, where ##a## is constant.

But that is not the case here. The problem identifies the force ##F## that you need to use with the work ##Fdx##. And the work done based on velocity is still ##mvdv##. All you need to do is to equate both as done previously and resolve the integrals. [Hint: the air friction force varies with velocity.]
 
  • Like
Likes berkeman and topsquark
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
Replies
16
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
6K
Replies
2
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K