- #1
bjnartowt
- 284
- 3
divergenceless vector function - can we draw "component by componet" conclusion?
Is this true or false?
[tex]\nabla \bullet {\bf{A}} = \frac{{\partial {A_i}}}{{\partial {x_i}}} + \frac{{\partial {A_j}}}{{\partial {x_j}}} + \frac{{\partial {A_k}}}{{\partial {x_k}}} = 0{\rm{ }} \to {\rm{ }}\frac{{\partial {A_i}}}{{\partial {x_i}}} = \frac{{\partial {A_j}}}{{\partial {x_j}}} = \frac{{\partial {A_k}}}{{\partial {x_k}}} = 0[/tex]
...in which the arrow says "implies that".
Thanks!
Homework Statement
Is this true or false?
[tex]\nabla \bullet {\bf{A}} = \frac{{\partial {A_i}}}{{\partial {x_i}}} + \frac{{\partial {A_j}}}{{\partial {x_j}}} + \frac{{\partial {A_k}}}{{\partial {x_k}}} = 0{\rm{ }} \to {\rm{ }}\frac{{\partial {A_i}}}{{\partial {x_i}}} = \frac{{\partial {A_j}}}{{\partial {x_j}}} = \frac{{\partial {A_k}}}{{\partial {x_k}}} = 0[/tex]
...in which the arrow says "implies that".
Thanks!