StevieTNZ said:
What bothers me is when people say when something has a really low probability of happening, it's saying it's not going to happen at all. Clearly it COULD.
Ultimately such a statement itself is uncertain, and a matter of the probability that the theory, which you are using to predict what CAN and CAN'T happen, is correct. At some point a probability becomes so small as to be less than the probability that all the experiments confirming the theory being used were accidentally way off the mark.
When you say "Clearly it COULD", how do you know? To what probability are you correct in your assertion?
Finally we may be ignorant of the impossibility of some event and thus we speak of it as something which "COULD" happen in the sense that we are unable to eliminate to exactly zero the probability of it happening. The statement is not one of actual possibility but a statement of our lack of infinite knowledge. It is important to identify if this is the case in what you are saying.
--------------
The above is all general concerns and context for the question at hand. The actual analysis assuming QM is correct, is this. When we speak of the wave-function for a quantum and the small probability of it "jumping to LA", we are really speaking of the small probability that it "was in LA all the time." so to speak...excepting the issue of what it means to say where it is or was at all in the absence of measurement.
It is more instructive to get down to cases. First in the non-relativistic case, you observe a quantum in NYC, at time t1. You write down a wave-function (a delta function) for its position given this knowledge. If you immediately observe its position again you will find it in NYC with probability 100% and LA with exactly 0%. You then evolve the wave-function for an interval of time so that at time t2 there is a finite small probability it will be observed in LA.
You haven't a clue as to its momentum and thus its velocity (which can be arbitrarily high in the non-relativistic setting) and so you cannot say that it couldn't be traveling so fast as to reach LA by the time t2 that you then observe it there. No teleportation involve here, simply the quantum having a very very small probability of moving very fast.
Now take the relativistic case. you observe a quantum in NYC, at time t1. You write down a wave-function (a delta function) for its position given this knowledge. You haven't a clue as to its momentum and thus its velocity (which must be less than c in the relativistic setting). If you then evolve the wave-function it will not exceed the speed of light in its propagation of probability. It is impossible to observe it in LA until it has had time to propagate there at some velocity < c. However once enough time has passed you have the same situation as before.
However some may misinterpret the point of maximum probability of a wave-function for an actual position of the corresponding quantum. In that case there is a finite probability that a later observation will find the actual quantum a distance greater than ct away from this peak. It is a surprise, not a sudden jump.
QM does not say we will see sudden jumps as implied by the term "teleportation" but rather explains that when we only look at discrete times we can only see a discrete series of positions i.e. jumps (but not sudden ones). In between looking we predict what might be seen (and how likely) with wave-functions.
Note: My analysis is based somewhat on my choice of interpretation (Orthodox CI) and others may describe the nature of the reality of the situation differently based on their interpretation. However I would point out that in the end all the other interpretations agree with the above in so far as
actual observations[/] is concerned because that's what QM predicts.
A final note. The phrase "quantum teleportation" has a distinct meaning not to be confused with the above described phenomena. It has to do with copying a quantum system completely (and necessarily destructively) by using an auxiliary system. Just as we shouldn't confuse "quantum cloning" with actual copying genetic material, we shouldn't confuse "quantum teleportation" with actual instantaneous jumping from point A to point B. These are romantic choices of terminology for more mundane actual phenomena.