DarMM said:
Even beyond this there is no non-circular reason for why each alternative is seen with the frequencies we observe, hence it cannot be said to be an interpretation of any of the formalisms of Quantum Mechanics (QM has three formalisms, no collapse, objective collapse and subjective collapse which give different predictions in certain obscure scenarios such as the Frauchiger Renner experiment. MWI cannot yet be said to be a functioning no collapse interpretation)
In addition one will often see the claim that MWI is local, but this is still an open issue.
It's true that it's difficult to understand probabilities in MWI, but I sort of feel like that's because there is no really good way to understand probabilities, when you get right down to it.
Let me sketch a "many-worlds" version of classical probabilities.
Suppose that we have a world that is deterministic except for one little aspect: There is a special coin such that flipping it produces heads/tails with equal probability, and there's no way, even in principle, to predict which.
Now, as far as anybody is concerned, the coin flip is completely nondeterministic. But secretly, this world is not real, but is a simulation in a gigantic computer. Every time in the simulation when someone (one of the simulated beings) flips the coin, the computer halts the simulation, makes a duplicate of the state, and then continues simulating both branches, giving one branch the result "heads" and the other branch the result "tails". As time goes on, there are more and more simulated universes, with different histories of coin flips.
Now for any simulated being living in one of the simulations, the coin seems perfectly random, with equal chance of heads and tails. But the operation of the master computer is deterministic. So determinism in an ensemble is perfectly compatible with nondeterminism in each element of the ensemble.
But what about probability? As the number of flips gets larger and larger, the number of simulations in which half the coin flips turned up "heads" gets much larger than the number of simulations in which there is a large imbalance of "heads" and "tails". So we can sort of understand the probabilistic statement "the coin has 50/50 chance of landing heads or tails" in terms of "typical" and "atypical" branches. The overwhelming majority of simulations will have 50/50 results, so we can call those "typical" worlds. In the typical worlds, the relative frequency of heads approaches 1/2.
However, this is really unsatisfying, for the following reason: What if, instead of creating two copies every time a coin is flipped, the computer creates 3 copies, and allows two copies that are given result "heads" and 1 copy that is given the result "tails"? Now, the "typical" branch has 2/3 heads, rather than 1/2. So with this variation, the coin does not have 50/50 odds, but 33/67 odds. That makes sense, except for the fact that in each world, the simulated people empirically determine the odds of heads and tails by just flipping many times and counting. Obviously, the counting process is not affected by the existence of more alternate worlds. What's changed by the addition of alternate worlds is not the experience of anyone in any of the worlds, but simply the definition of which worlds are considered "typical".
I claim that there is no completely satisfying way to give meaning to the claim "the coin has 50/50 chance of being heads". You want it to be the case that probabilities correspond to relative frequencies, but that will only be true in some possible worlds, and not others. You can make it true by definition by calling the worlds where it is false "atypical", and restricting your probabilistic claims to the typical worlds. But that makes it all pretty tautological.
It seems to me that there is no good explanation for probability in a many-worlds setting, and furthermore, you can't empirically distinguish between such a many-worlds setting and a single-world with nondeterminism (as far as you're concerned, there is no difference, as long as there is no interaction between possible worlds---you can just define your world to be the "real" one, and consider the others just hypotheticals).