MHB Does Commutativity Hold for Matrices A and B with a Specific Matrix C?

  • Thread starter Thread starter TheScienceAlliance
  • Start date Start date
  • Tags Tags
    Matrix
AI Thread Summary
Commutativity for matrices A and B holds when both satisfy the conditions AC = CA and BC = CB with a specific matrix C defined as [[0, 1], [-1, 0]]. A construction proof demonstrates that matrices A and B can be expressed in specific forms, leading to the conclusion that AB = BA. The discussion clarifies a typographical error regarding the initial conditions, correcting AC = AC to AC = CA. The proof involves substituting the defined forms of A and B into the commutative property. Ultimately, the findings confirm that under the given conditions, matrices A and B commute.
TheScienceAlliance
Messages
6
Reaction score
0
If A and B are matrices that AC = AC and BC=CB, where C is a matrix whose first row's entries are 0 1 and the second row's entries are -1 0, then AB=BA.
 
Mathematics news on Phys.org
MathHelpBoardsUser said:
If A and B are matrices that AC = AC and BC=CB, where C is a matrix whose first row's entries are 0 1 and the second row's entries are -1 0, then AB=BA.
Is there a typo? Did you mean AC = CA?

-Dan
 
topsquark said:
Is there a typo? Did you mean AC = CA?

-Dan
Yes. I apologize.
 
Okay, so this is more or less a construction proof. You know that
[math]C = \left ( \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right )[/math]

Let
[math]A = \left ( \begin{matrix} a & b \\ c & d \end{matrix} \right )[/math]

and
[math]B = \left ( \begin{matrix} w & x \\ y & z \end{matrix} \right )[/math]

So.
1) Using AC = CA show that
[math]A = \left ( \begin{matrix} a & b \\ -b & a \end{matrix} \right )[/math]

2) Using BC = CB show that
[math]B = \left ( \begin{matrix} w & x \\ -x & w \end{matrix} \right )[/math]

3) Using A and B from 1) and 2) show that AB = BA.

-Dan
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top