MHB Does Commutativity Hold for Matrices A and B with a Specific Matrix C?

  • Thread starter Thread starter TheScienceAlliance
  • Start date Start date
  • Tags Tags
    Matrix
AI Thread Summary
Commutativity for matrices A and B holds when both satisfy the conditions AC = CA and BC = CB with a specific matrix C defined as [[0, 1], [-1, 0]]. A construction proof demonstrates that matrices A and B can be expressed in specific forms, leading to the conclusion that AB = BA. The discussion clarifies a typographical error regarding the initial conditions, correcting AC = AC to AC = CA. The proof involves substituting the defined forms of A and B into the commutative property. Ultimately, the findings confirm that under the given conditions, matrices A and B commute.
TheScienceAlliance
Messages
6
Reaction score
0
If A and B are matrices that AC = AC and BC=CB, where C is a matrix whose first row's entries are 0 1 and the second row's entries are -1 0, then AB=BA.
 
Mathematics news on Phys.org
MathHelpBoardsUser said:
If A and B are matrices that AC = AC and BC=CB, where C is a matrix whose first row's entries are 0 1 and the second row's entries are -1 0, then AB=BA.
Is there a typo? Did you mean AC = CA?

-Dan
 
topsquark said:
Is there a typo? Did you mean AC = CA?

-Dan
Yes. I apologize.
 
Okay, so this is more or less a construction proof. You know that
[math]C = \left ( \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right )[/math]

Let
[math]A = \left ( \begin{matrix} a & b \\ c & d \end{matrix} \right )[/math]

and
[math]B = \left ( \begin{matrix} w & x \\ y & z \end{matrix} \right )[/math]

So.
1) Using AC = CA show that
[math]A = \left ( \begin{matrix} a & b \\ -b & a \end{matrix} \right )[/math]

2) Using BC = CB show that
[math]B = \left ( \begin{matrix} w & x \\ -x & w \end{matrix} \right )[/math]

3) Using A and B from 1) and 2) show that AB = BA.

-Dan
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top