MHB Does R/N Form a Ring with Unity if N is a Proper Ideal of R?

Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Good afternoon. Here is the problem:

Show that if $R$ is a ring with unity and $N$ is an ideal of $R$ such that $N \neq R$, then $R/N$ is a ring with unity.

My answer: Consider the homomorphism $\phi: R \to R/N$. Given $r \in R$ we have that $\phi(r) = r + N = \phi(1 \cdot r) = \phi(r \cdot 1) = (1+N)(r+N) = (r+N)(1+N)$, therefore $1+N$ is the unity of $R/N$.

I appreciate the help. Cheers! (Yes)

P.S.: I am assuming the usual operations concerning factor rings:

$(a+N) + (b+N) = (a+b) + N$ and $(a+N)(b+N) = (ab) + N$.
 
Physics news on Phys.org
Fantini said:
Good afternoon. Here is the problem:

Show that if $R$ is a ring with unity and $N$ is an ideal of $R$ such that $N \neq R$, then $R/N$ is a ring with unity.

My answer: Consider the homomorphism $\phi: R \to R/N$. Given $r \in R$ we have that $\phi(r) = r + N = \phi(1 \cdot r) = \phi(r \cdot 1) = (1+N)(r+N) = (r+N)(1+N)$, therefore $1+N$ is the unity of $R/N$.

I appreciate the help. Cheers! (Yes)

P.S.: I am assuming the usual operations concerning factor rings:

$(a+N) + (b+N) = (a+b) + N$ and $(a+N)(b+N) = (ab) + N$.
Looks right to me. Only thing, there wasn't any need to invoke a homomorphism here. You could just simply show that $(1+N)(r+N)=(r+N)(1+N)=r+N$ for all r in R. Well, there ain't much to show though.
 
the only tricky part is that 1+N might actually = N, but this means that 1 is in N,

in which case we still have a multiplicative identity, but:

R/N = R/R = {0}, which is a "silly" ring. this is why we insist N ≠ R at the outset.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top