Does the derivative of a P(V) eqn give the eqn for change in Pressure?

AI Thread Summary
Taking the derivative of a P(V) equation can provide insights into the rate of change of pressure with respect to volume. The interpretation of this derivative depends on the variable with respect to which differentiation is performed. In general, derivatives represent rates of change, but their meaning varies based on the context of the differentiation. The discussion emphasizes that understanding the relationship between pressure and volume is crucial for interpreting the results correctly. Ultimately, the derivative can indicate how pressure changes as volume changes.
JoeyBob
Messages
256
Reaction score
29
Homework Statement
N/A
Relevant Equations
N/A
I know the integral of a P(V) eqn gives an eqn for work.

I was wondering if taking the derivative of a P(V) eqn gives an eqn for change in pressure?
 
Physics news on Phys.org
JoeyBob said:
Homework Statement:: N/A
Relevant Equations:: N/A

I know the integral of a P(V) eqn gives an eqn for work.

I was wondering if taking the derivative of a P(V) eqn gives an eqn for change in pressure?
What is your definition of an "equation for change in pressure?"
 
Chestermiller said:
What is your definition of an "equation for change in pressure?"
Gives rate of change.

For instance, if you take the derivative of velocity, you get acceleration, which is the rate of change of velocity.
 
JoeyBob said:
For instance, if you take the derivative of velocity, you get acceleration, which is the rate of change of velocity.
No, the derivative of velocity with respect to time is acceleration. What you differentiate with respect to is important. For example, there are situations where velocity is given as a function of position. The derivative of such a velocity function is not acceleration.

Derivatives are rates of change with respect to the differentiation variable, but depending on what the differentiation variable is, the interpretation may vary.
 
  • Like
Likes Steve4Physics
Orodruin said:
No, the derivative of velocity with respect to time is acceleration. What you differentiate with respect to is important. For example, there are situations where velocity is given as a function of position. The derivative of such a velocity function is not acceleration.

Derivatives are rates of change with respect to the differentiation variable, but depending on what the differentiation variable is, the interpretation may vary.
So it would be rate of change with respect to volume?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top