Does the Hamilton-Jacobi equation exist for chaotic systems?

Click For Summary
SUMMARY

The Hamilton-Jacobi equation does not exist for chaotic systems due to the lack of sufficient constants of motion in involution, as required by Liouville's theorem for integrability. While a canonical transformation can exist locally outside an equilibrium, it is not globally defined, leading to chaotic behavior in invariant sets. The discussion highlights that dynamical chaos encompasses various effects, including ergodicity and separatrix splitting, which complicate the trajectory behavior of Hamiltonian systems. Perturbation theory and canonical perturbation theories are also referenced as areas of study that address these complexities.

PREREQUISITES
  • Understanding of Hamiltonian mechanics and Hamiltonian systems
  • Familiarity with canonical transformations and their implications
  • Knowledge of Liouville's theorem and its role in integrability
  • Basic concepts of dynamical systems and chaos theory
NEXT STEPS
  • Study the implications of Liouville's theorem in Hamiltonian mechanics
  • Explore canonical transformations in greater detail
  • Investigate the effects of dynamical chaos in Hamiltonian systems, focusing on ergodicity and separatrix splitting
  • Read "Canonical Perturbation Theories Degenerate Systems and Resonance" for insights on perturbation theory
USEFUL FOR

Physicists, mathematicians, and researchers interested in dynamical systems, chaos theory, and Hamiltonian mechanics will benefit from this discussion.

andresB
Messages
625
Reaction score
374
TL;DR
Does the Hamilton-Jacobi equation exist for chaotic systems?
Given a Hamiltonian ##H(\mathbf{q},\mathbf{p})##, in the time-independent Hamilton-Jacobi approach we look for a canonical transformation ##(\mathbf{q},\mathbf{p})\rightarrow(\mathbf{Q},\mathbf{P})## such that the new Hamiltonian is one of the new momenta $$H(\mathbf{q},\mathbf{p})=K(\mathbf{Q},\mathbf{P})=P_{1}=E.$$
If such transformation exists, all the momenta ##\mathbf{P}## are constant of the motion. And, since the transformation is canonical, we will have n constant of the motion in involution, i.e., ##\left\{ P_{i},P_{j}\right\} =0.## But this seems to be the requirement of the Liouville theorem for integrability. Chaotic systems don't have that many constants of motion in involution.
This seems to imply that the Hamilton-Jacobi equations cannot be even written for chaotic systems, so my reasoning has to be wrong somewhere. Where?
 
Last edited by a moderator:
Physics news on Phys.org
andresB said:
TL;DR Summary: Does the Hamilton-Jacobi equation exist for chaotic systems?

Given a Hamiltonian H(q,p), in the time-independent Hamilton-Jacobi approach we look for a canonical transformation (q,p)→(Q,P) such that the new Hamiltonian is one of the new momenta H(q,p)=K(Q,P)=P1=E.
If such transformation exists, all the momenta P are constant o
Such a transformation exists locally outside an equilibrium. The set where this transformation is defined is not invariant. The system comes and goes away from there, while a dynamical chaos appears in invariant sets.
 
Last edited:
wrobel said:
Such a transformation exists locally outside an equilibrium. The set where this transformation is defined is not invariant. The system comes and goes away from there, while a dynamical chaos appears in invariant sets.

Ok, I suspected the issue had to do with the new momenta not being defined globally.

Yet, I'm not sure I understand your answer. Can you give more details or point to a source with an example?
 
A dynamical chaos is an informal concept which expresses a complex of very different effects. The common feature for all these effects is a complicated behavior of trajectories of a dynamical system. Every time, one should specify what he means by saying “dynamical chaos”. For example, in Hamiltonian systems, ergodicity or separatrix splitting are commonly considered as a dynamical chaos, but there are a lot of other chaotic effects. Real life examples are really hard.
See for example this https://link.springer.com/book/10.1007/978-3-642-03028-4
or start from this https://www.mat.univie.ac.at/~gerald/ftp/book-ode/ode.pdf

UPD

Dissipative systems commonly have attractors. If an attractor is of complicated geometry, say has a fractional dimension, then trajectories which wind up on the attractor replicate its geometry and become complicated. That is another chaotic effect.
 
Last edited:
  • Informative
  • Like
Likes   Reactions: andresB and vanhees71
Fascinating and frustrating at the same time.

wrobel said:

My doubts started by studyng perturbation theory. In the book Canonical Perturbation Theories Degenerate Systems and Resonance, I find the following
1691594084323.png


The usual books in analytical mechanics don't deal with this.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
631
  • · Replies 1 ·
Replies
1
Views
2K