A Does the Z boson pole show up in the photon propagator?

Click For Summary
The discussion centers on whether the Z boson pole appears in the photon propagator. It is noted that the photon propagator is computed by summing self-energy diagrams, which can include contributions from Z bosons due to shared quantum numbers. However, it is clarified that gauge symmetry and the Ward identity prevent the Z boson pole from affecting the photon propagator. The conversation also touches on the differences in parity between the photon and Z boson, emphasizing that the weak interaction does not conserve parity. Ultimately, the specific diagram mentioned does not contribute to the one-particle irreducible (1PI) diagrams of the photon’s self-energy.
springbottom
Messages
7
Reaction score
5
TL;DR
Z and photon have same quantum numbers, how are their pole structures of the (interacting) propagator related?
If I look at the photon propagator <A_mu (x) A^nu(0) > in momentum space, as I understand it I am to compute this by summing up all the self-energy diagrams of the photon, which look like:

photon -> stuff -> photon

In particular, since the photon shares the same quantum numbers as the Z, you get a collection of diagrams that are:

photon -> stuff -> Z -> stuff -> Z -> stuff -> photon

(where the stuff connecting photon with Z could be a fermion loop for example). In this case, it would seem that the pole structure of the Z is inherted by the photon propagator? In particular, if there is some complex momenta value at which the Z boson has a pole, then the photon propagator should also have the same pole? Is this true?
[I may have messed something very basic up, I am still quite bad at basic QFT]
 
Physics news on Phys.org
No, because of gauge symmetry (Ward identity)
 
springbottom said:
Z and photon have same quantum numbers,

Why do you think that? The photon has odd parity. The Z doesn't even have parity.
 
  • Like
Likes vanhees71 and protonsarecool
Vanadium 50 said:
Why do you think that? The photon has odd parity. The Z doesn't even have parity.
I thought that the photon and Z both had helicity and not parity. Was I mistaken?
 
The weak interaction does not conserve parity. Parity is not a good quantum number when discussing the weak interaction.
 
  • Like
Likes vanhees71, ohwilleke and malawi_glenn
For instance the Z boson couple to fermions via gamma5 (couple differently for left- and right-handed fermions), the photon does not care about such things.

1657561494693.png

this diagram does not contribute to the 1PI diagrams of the photons self-energy
 
Last edited by a moderator:
Thread 'Some confusion with the Binding Energy graph of atoms'
My question is about the following graph: I keep on reading that fusing atoms up until Fe-56 doesn’t cost energy and only releases binding energy. However, I understood that fusing atoms also require energy to overcome the positive charges of the protons. Where does that energy go after fusion? Does it go into the mass of the newly fused atom, escape as heat or is the released binding energy shown in the graph actually the net energy after subtracting the required fusion energy? I...