High School Does this help solve the Riemann Hypothesis?

Click For Summary
SUMMARY

The discussion centers on the complexities of the Riemann Hypothesis and the properties of the Riemann zeta function, specifically addressing the notion of an inverse zeta function. The participant presents an equation involving the zeta function and its components, but concludes that there is no valid inverse zeta function due to the infinite nature of its zeros. The consensus is that the proposed method does not contribute to solving the Riemann Hypothesis, as the equation presented does not effectively isolate the real part of s.

PREREQUISITES
  • Understanding of complex analysis, particularly the properties of the Riemann zeta function.
  • Familiarity with the concept of analytic continuation and its implications for functions like the zeta function.
  • Knowledge of infinite series and their convergence properties.
  • Basic grasp of the Riemann Hypothesis and its significance in number theory.
NEXT STEPS
  • Study the properties of the Riemann zeta function, focusing on its zeros and their implications for number theory.
  • Learn about analytic continuation and how it applies to complex functions, particularly the zeta function.
  • Explore the concept of inverse functions in complex analysis and why the inverse zeta function is not defined.
  • Review literature on the Riemann Hypothesis, including insights from sources such as Physics Forums.
USEFUL FOR

Mathematicians, researchers in number theory, and students studying complex analysis who are interested in the Riemann Hypothesis and the properties of the zeta function.

MevsEinstein
Messages
124
Reaction score
36
TL;DR
I created an equation with the real part of the input of the zeta function on the RHS and a complex expression on the LHS
Hello PF!

If ##\Re (s)## is the real part of ##s## and ##\Im (s)## is the imaginary part, then t is very easy to prove that $$\zeta (s) = \zeta ( \Re (s) ) \zeta ( \Im (s)i) - \displaystyle\sum_{n=1}^\infty \frac{1}{n^{\Re (s)}} [\displaystyle\sum_{k \in S, \mathbb{Z} \S = n} \frac{1}{k^{\Im(s)i}}]$$ Since the second term simplifies to ## \zeta ( \Re (s) ) \zeta ( \Im (s)i) - \zeta (s)##. (##\mathbb{Z} \S = n## is actually ##\mathbb{Z}## \##S
## = ##n##). Now, solving for ##\Re (s)## gets us $$\zeta^{-1} ({\frac{\zeta (s) + \displaystyle\sum_{n=1}^\infty \frac{1}{n^{\Re (s)}}[ \displaystyle\sum_{k \in S, \mathbb{Z} \S = n} \frac{1}{k^{\Im (s)i}}]}{\zeta (\Im (s)i)}}) = \Re (s)$$ Setting ##\zeta (s)## to zero gives us the equation we were looking for. Now I am thinking, could this help solve the Riemann hypothesis? Or will this just spit out ##\Re (s)##? I mean, the inverse zeta function is very complicated (page 43 of https://arxiv.org/pdf/2106.06915.pdf ), so it's hard to tell.
 
Last edited:
  • Skeptical
Likes weirdoguy and malawi_glenn
Mathematics news on Phys.org
The short answer is a simple no.

And there is no such thing as an inverse zeta-function. Let us assume for a second that there is ##\zeta^{-1}.## Then ##\zeta(s)=0## means ##s=\zeta^{-1}(\zeta(s))=\zeta^{-1}(0)##. However, there are infinitely many zeros of the zeta-function. How could that be just a single value ##\zeta^{-1}(0)?## The pre-image ##\zeta^{-1}(\{0\})## is an entire, infinite set. No way to make this a function.

You have to be careful with the zeta-function. E.g., ##\zeta(-1)=-\dfrac{1}{12}## but ##1+2+3+\ldots \neq -\dfrac{1}{12}.## I am not sure what you are doing here so I cannot comment your equations. If you want to even understand the Riemann hypothesis then you should study
https://www.physicsforums.com/insig...thesis-and-ramanujans-sum/#toggle-id-1-closed
 
  • Like
  • Informative
Likes nuuskur, berkeman, malawi_glenn and 1 other person
To be fair, your first sentence beginning with
I created an equation..
is already alarming and strongly advises to ignore what follows. :frown:
 
MevsEinstein said:
Now, solving for ##\Re (s)## gets us $$\zeta^{-1} ({\frac{\zeta (s) + \displaystyle\sum_{n=1}^\infty \frac{1}{n^{\Re (s)}}[ \displaystyle\sum_{k \in S, \mathbb{Z} \S = n} \frac{1}{k^{\Im (s)i}}]}{\zeta (\Im (s)i)}}) = \Re (s)$$
Ignoring all other possible problems, how is this solving for ##\Re (s)##? It appears on both sides!
 
martinbn said:
how is this solving for ##\Re (s)##? It appears on both sides!
Oops, sorry about that.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K