B Does this kind of square matrix exist?

  • B
  • Thread starter Thread starter Trollfaz
  • Start date Start date
  • Tags Tags
    Matrix Square
Trollfaz
Messages
143
Reaction score
14
I had a homework question that gives A as an arbitrary matrix. Then the question states that A^2=A
Now I manipulate the equation to give this
A^2-A=0. -->A(A-I)= 0
So A can be I or 0
Are there any other values A can take?
 
  • Like
Likes anuttarasammyak
Physics news on Phys.org
For an example
A=\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix}
satisfies the relation. It is I for some dimension, 0 for others. In general it is named as projection operator.
 
Last edited:
  • Like
Likes mathwonk, jasonRF and PeroK
Trollfaz said:
I had a homework question that gives A as an arbitrary matrix. Then the question states that A^2=A
Now I manipulate the equation to give this
A^2-A=0. -->A(A-I)= 0
So A can be I or 0
Are there any other values A can take?
Yes, lots more. Since ##A^2 - A = 0## (i.e., the zero matrix), then ##|A^2 - A| = |0|## or ##|A||A - I| = |0|##.
The last equation is satisfied for any square matrix A whose determinant is zero, or any square matrix for which ##|A - I| = 0##. Any non-invertible matrix A will satisfy ##|A| = 0##, and similar for ##A - I##.
anuttarasammyak said:
It is I for some dimension, 0 for others. In general it is named as projection operator.
This is a somewhat confusing way to say that your example maps a vector <x, y, z> to <x, y, 0>.
 
Trollfaz said:
I had a homework question that gives A as an arbitrary matrix. Then the question states that A^2=A
Now I manipulate the equation to give this
A^2-A=0. -->A(A-I)= 0
So A can be I or 0
Are there any other values A can take?
Notice the ring of matrices is not an integral domain, i. e., ##AB=0 ## does not imply either A or B is zero. And notice there is always a solution to ##A^n=I##: Rotation by an angle ##2 \mathbb \pi/n ##
 
Last edited by a moderator:
These are called idempotent matrices. Even in dimension ##2##, there is a whole family of examples.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top