B Does this kind of square matrix exist?

  • B
  • Thread starter Thread starter Trollfaz
  • Start date Start date
  • Tags Tags
    Matrix Square
Trollfaz
Messages
143
Reaction score
14
I had a homework question that gives A as an arbitrary matrix. Then the question states that A^2=A
Now I manipulate the equation to give this
A^2-A=0. -->A(A-I)= 0
So A can be I or 0
Are there any other values A can take?
 
  • Like
Likes anuttarasammyak
Physics news on Phys.org
For an example
A=\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix}
satisfies the relation. It is I for some dimension, 0 for others. In general it is named as projection operator.
 
Last edited:
  • Like
Likes mathwonk, jasonRF and PeroK
Trollfaz said:
I had a homework question that gives A as an arbitrary matrix. Then the question states that A^2=A
Now I manipulate the equation to give this
A^2-A=0. -->A(A-I)= 0
So A can be I or 0
Are there any other values A can take?
Yes, lots more. Since ##A^2 - A = 0## (i.e., the zero matrix), then ##|A^2 - A| = |0|## or ##|A||A - I| = |0|##.
The last equation is satisfied for any square matrix A whose determinant is zero, or any square matrix for which ##|A - I| = 0##. Any non-invertible matrix A will satisfy ##|A| = 0##, and similar for ##A - I##.
anuttarasammyak said:
It is I for some dimension, 0 for others. In general it is named as projection operator.
This is a somewhat confusing way to say that your example maps a vector <x, y, z> to <x, y, 0>.
 
Trollfaz said:
I had a homework question that gives A as an arbitrary matrix. Then the question states that A^2=A
Now I manipulate the equation to give this
A^2-A=0. -->A(A-I)= 0
So A can be I or 0
Are there any other values A can take?
Notice the ring of matrices is not an integral domain, i. e., ##AB=0 ## does not imply either A or B is zero. And notice there is always a solution to ##A^n=I##: Rotation by an angle ##2 \mathbb \pi/n ##
 
Last edited by a moderator:
These are called idempotent matrices. Even in dimension ##2##, there is a whole family of examples.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top