- #1
murshid_islam
- 458
- 19
- TL;DR Summary
- Matrix representation for closed-form expression for Fibonacci numbers:
From the wikipedia page for Fibonacci numbers, I got that the matrix representation for closed-form expression for Fibonacci numbers is:
[tex]\begin{pmatrix}
1 & 1 \\
1 & 0\\
\end{pmatrix} ^ n =
\begin{pmatrix}
F_{n+1} & F_n \\
F_n & F_{n-1}\\
\end{pmatrix} [/tex]
That only works when [itex]F_0 = 0[/itex] and [itex]F_1 = 1[/itex]. How can I find the matrix representation for arbitrary starting values, for example, when [itex]F_0 = a[/itex] and [itex]F_1 = b[/itex]?
[tex]\begin{pmatrix}
1 & 1 \\
1 & 0\\
\end{pmatrix} ^ n =
\begin{pmatrix}
F_{n+1} & F_n \\
F_n & F_{n-1}\\
\end{pmatrix} [/tex]
That only works when [itex]F_0 = 0[/itex] and [itex]F_1 = 1[/itex]. How can I find the matrix representation for arbitrary starting values, for example, when [itex]F_0 = a[/itex] and [itex]F_1 = b[/itex]?