MHB Does this triangle have to be flipped when finding the magnitudes and angles?

Click For Summary
In relative velocity problems, the direction of the plane does not need to be flipped when drawing the triangle for magnitudes and angles. The example provided illustrates how to calculate the resultant velocity of a plane considering wind direction using both the Law of Cosines and vector addition. The angle between the plane's velocity vector and the wind vector is crucial for accurate calculations. Both methods yield the same resultant velocity of approximately 692.58 km/h. Understanding the correct angles and vector directions is essential for solving these types of problems effectively.
Raerin
Messages
46
Reaction score
0
In those kind of relative velocity questions in calculus & vectors class, does the direction of the plane need to be flipped when drawing the triangle to find the magnitudes and angles?

Example of a question:
An airline pilot has her controls set to fly at an air speed of 615 km/h at an azimuth bearing of 40 degrees. A wind is blowing from an azimuth bearing of 205 degrees at 80 km/h. Determine the velocity of the plane relative to the ground.

For this question, I also have troubles finding the angles between vectors when I draw the triangle. A link to an illustration on Paint or some other drawing program would be really helpful!

Thanks :)
 
Mathematics news on Phys.org
Here are two ways to work the problem:

a) Law of Cosines:

Consider the following diagram:

View attachment 1546

The angle between the plane's velocity vector and that of the wind is:

$$\theta=\left(180-((90-(205-180))-(90-40)) \right)^{\circ}=165^{\circ}$$

Hence:

$$R=\sqrt{615^2+80^2-2\cdot615\cdot80\cos\left(165^{\circ} \right)}\approx692.583642102$$

b) Vector addition:

$$\vec{R}=\left\langle 615\cos\left(50^{\circ} \right)+80\cos\left(65^{\circ} \right),\sin\left(50^{\circ} \right)+80\sin\left(65^{\circ} \right) \right\rangle$$

$$R=\left|\vec{R} \right|=\sqrt{\left(615\cos\left(50^{\circ} \right)+80\cos\left(65^{\circ} \right) \right)^2+\left(\sin\left(50^{\circ} \right)+80\sin\left(65^{\circ} \right) \right)^2}\approx692.583642102$$
 

Attachments

  • raerin.jpg
    raerin.jpg
    4.3 KB · Views: 103
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
25
Views
2K
  • · Replies 72 ·
3
Replies
72
Views
9K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
15
Views
2K