MHB Does this triangle have to be flipped when finding the magnitudes and angles?

Raerin
Messages
46
Reaction score
0
In those kind of relative velocity questions in calculus & vectors class, does the direction of the plane need to be flipped when drawing the triangle to find the magnitudes and angles?

Example of a question:
An airline pilot has her controls set to fly at an air speed of 615 km/h at an azimuth bearing of 40 degrees. A wind is blowing from an azimuth bearing of 205 degrees at 80 km/h. Determine the velocity of the plane relative to the ground.

For this question, I also have troubles finding the angles between vectors when I draw the triangle. A link to an illustration on Paint or some other drawing program would be really helpful!

Thanks :)
 
Mathematics news on Phys.org
Here are two ways to work the problem:

a) Law of Cosines:

Consider the following diagram:

View attachment 1546

The angle between the plane's velocity vector and that of the wind is:

$$\theta=\left(180-((90-(205-180))-(90-40)) \right)^{\circ}=165^{\circ}$$

Hence:

$$R=\sqrt{615^2+80^2-2\cdot615\cdot80\cos\left(165^{\circ} \right)}\approx692.583642102$$

b) Vector addition:

$$\vec{R}=\left\langle 615\cos\left(50^{\circ} \right)+80\cos\left(65^{\circ} \right),\sin\left(50^{\circ} \right)+80\sin\left(65^{\circ} \right) \right\rangle$$

$$R=\left|\vec{R} \right|=\sqrt{\left(615\cos\left(50^{\circ} \right)+80\cos\left(65^{\circ} \right) \right)^2+\left(\sin\left(50^{\circ} \right)+80\sin\left(65^{\circ} \right) \right)^2}\approx692.583642102$$
 

Attachments

  • raerin.jpg
    raerin.jpg
    4.3 KB · Views: 96
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top