I Double delta potential -- Degeneracy of bound states in one dimension?

LagrangeEuler
Messages
711
Reaction score
22
I have a question from the youtube lecture

That part starts after 42 minutes and 47 seconds.
Balakrishnan said that if delta barriers are very distant (largely separated) then we have degeneracy. I do not understand how this is possible when in 1d problems there is no degeneracy for bond states.
 
Physics news on Phys.org
If I have two identical delta functions very far away and one particle, to a very good approximation it is either in potential #1 or in potential #2. They have the same energy (to an even better approximation) so the system is degenerate.
 
Last edited:
So if I understand you well it is practical like two separate systems? Because of how to comment on this in the context of that in the one-dimensional problems there is no degeneration in the case of bond states.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top