I Double delta potential -- Degeneracy of bound states in one dimension?

LagrangeEuler
Messages
711
Reaction score
22
I have a question from the youtube lecture

That part starts after 42 minutes and 47 seconds.
Balakrishnan said that if delta barriers are very distant (largely separated) then we have degeneracy. I do not understand how this is possible when in 1d problems there is no degeneracy for bond states.
 
Physics news on Phys.org
If I have two identical delta functions very far away and one particle, to a very good approximation it is either in potential #1 or in potential #2. They have the same energy (to an even better approximation) so the system is degenerate.
 
Last edited:
So if I understand you well it is practical like two separate systems? Because of how to comment on this in the context of that in the one-dimensional problems there is no degeneration in the case of bond states.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top