Double pendulum Lagrangian using small angle approximation formula

AI Thread Summary
The discussion centers on deriving the Lagrangian for a double pendulum using the small angle approximation. The initial Lagrangian includes a cosine term that is approximated, leading to the conclusion that terms like ##\cos(\phi_1 - \phi_2)## can be simplified to second-order terms. Participants express confusion regarding the transformation of terms, particularly the contribution from ##mgl(2\cos\phi_1 + \cos\phi_2)##, with some suggesting that constant terms can be omitted without affecting the equations of motion. The consensus is that while second-order terms can be neglected, it is incorrect to set second-order products like ##\dot \phi_1 \dot \phi_2## to one, as they must be retained for accurate modeling. The conversation emphasizes the importance of correctly identifying and retaining relevant terms in the Lagrangian formulation.
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this part (b) of this problem,
1717565864499.png

From (a), we know that
##\mathcal{L}\left(\phi_{1}, \phi_{2}, \dot{\phi}_{1}, \dot{\phi}_{2}\right)=\frac{1}{2} m \ell^{2}\left[2 \dot{\phi}_{1}^{2}+\dot{\phi}_{2}^{2}+2 \cos \left(\phi_{1}-\phi_{2}\right) \dot{\phi}_{1} \dot{\phi}_{2}\right]+m g \ell\left(2 \cos \phi_{1}+\cos \phi_{2}\right)##

And we want ##\mathcal{L}\left(\phi_{1}, \phi_{2}, \dot{\phi}_{1}, \dot{\phi}_{2}\right)=\frac{1}{2} m \ell^{2}\left[2 \dot{\phi}_{1}^{2}+\dot{\phi}_{2}^{2}+2 \dot{\phi}_{1} \dot{\phi}_{2}\right]-\frac{1}{2} m g \ell\left(2 \phi_{1}^{2}+\phi_{2}^{2}\right)##

We use the following formula for the small angle approximation of cosine

##\cos \phi_1 = 1 - \frac{\phi^2_1}{2}##

##\cos \phi_2 = 1 - \frac{\phi^2_2}{2}##

There imply that,

##\cos(\phi_1 - \phi_2) = 1 - \frac{(\phi_1 - \phi_2)^2}{2}##

##\cos(\phi_1 - \phi_2) = 1 - \frac{\phi_1^2 - 2\phi_1\phi_2 + \phi^2_2}{2}##

Thus, this proves that ##\cos(\phi_1 - \phi_2)## is a second order term to we must remove it from the expression.

However, why don't we remove ##\dot \phi_2 \dot \phi_1## instead?

This would mean ##\mathcal{L} = \frac{1}{2}ml^2(2\dot \phi_1^2 + \dot \phi_2^2 + 1 - \frac{\phi^2_1}{2} + \phi_1\phi_2 - \frac{\phi^2_2}{2}) - \frac{1}{2}mgl(2\phi^2_1 + \phi^2_2)##

I also have ao confusion about transfomring one of the other terms namely the ##mgl(2\cos\phi_1 + \cos \phi_2)##

I get ##mgl(3 - \phi_1^2 + \frac{\phi^2_2}{2})## instead of ##\frac{1}{2}mgl(2\phi_1^2 + \phi_2^2)##

This is from

##2\cos\phi_1 + \cos\phi_2 = 2[1 - \frac{\phi_1^2}{2}] + 1 - \frac{\phi_2^2}{2} = 3 - \phi_1^2 + \frac{\phi_2^2}{2}##

Does anybody please know what I have done wrong?

Thanks!
 
Physics news on Phys.org
ChiralSuperfields said:
Thus, this proves that ##\cos(\phi_1 - \phi_2)## is a second order term to we must remove it from the expression.

However, why don't we remove ##\dot \phi_2 \dot \phi_1## instead?
The complete term is ##\cos(\phi_1 - \phi_2)\dot \phi_2 \dot \phi_1##.
Expanding ##\cos(\phi_1 - \phi_2)## produces a second order term and a fourth order term.
 
  • Like
  • Love
Likes MatinSAR and member 731016
ChiralSuperfields said:
I also have ao confusion about transfomring one of the other terms namely the ##mgl(2\cos\phi_1 + \cos \phi_2)##

I get ##mgl(3 - \phi_1^2 + \frac{\phi^2_2}{2})## instead of ##\frac{1}{2}mgl(2\phi_1^2 + \phi_2^2)##
No, you should get ##mgl(3 - \phi_1^2 - \frac{\phi^2_2}{2})##, instead of ##-\frac{1}{2}mgl(2\phi_1^2 + \phi_2^2)##. The difference is a constant.
 
  • Like
  • Love
Likes MatinSAR and member 731016
haruspex said:
The difference is a constant.
… and at the risk of stating the obvious, a constant addition to the Lagrangian does not affect the equations of motion and can therefore be removed.

Also, to state #2 slightly different: You have a term on the form ##\dot \phi^2 g(\phi)##. The only second order term from such an expression comes from the zero order contribution of ##g(\phi)## as
$$
\dot \phi^2 g(\phi) = \dot \phi^2 [g(0) + \mathcal O(\phi)]
$$
(In this particular case ##\mathcal O(\phi^2)##)
 
  • Love
Likes member 731016
haruspex said:
No, you should get ##mgl(3 - \phi_1^2 - \frac{\phi^2_2}{2})##, instead of ##-\frac{1}{2}mgl(2\phi_1^2 + \phi_2^2)##. The difference is a constant.
Orodruin said:
… and at the risk of stating the obvious, a constant addition to the Lagrangian does not affect the equations of motion and can therefore be removed.

Also, to state #2 slightly different: You have a term on the form ##\dot \phi^2 g(\phi)##. The only second order term from such an expression comes from the zero order contribution of ##g(\phi)## as
$$
\dot \phi^2 g(\phi) = \dot \phi^2 [g(0) + \mathcal O(\phi)]
$$
(In this particular case ##\mathcal O(\phi^2)##)
Thank you for your replies @haruspex and @Orodruin!

We want $$\mathcal{L}\left(\phi_{1}, \phi_{2}, \dot{\phi}_{1}, \dot{\phi}_{2}\right)=\frac{1}{2} m \ell^{2}\left[2 \dot{\phi}_{1}^{2}+\dot{\phi}_{2}^{2}+2 \dot{\phi}_{1} \dot{\phi}_{2}\right]-\frac{1}{2} m g \ell\left(2 \phi_{1}^{2}+\phi_{2}^{2}\right)$$

Taking the first part of the Lagrangian and given that $$\cos(\phi_1 - \phi_2) = 1 - \frac{\phi_1^2 - 2\phi_1\phi_2 + \phi_2^2}{2}$$

We write that $$\frac{1}{2}ml^2[2\dot \phi_1^2 + \dot \phi_2^2 + 2\cos(\phi_1 - \phi_2)\dot \phi_1 \dot \phi_2]$$ term as $$\frac{1}{2}ml^2[2\dot \phi_1^2 + \dot \phi_2^2 + 2(1 - \frac{\phi_1^2 - 2\phi_1\phi_2 + \phi_2^2}{2})\dot \phi_1 \dot \phi_2]$$

Which is same as,

$$\frac{1}{2}ml^2[2\dot \phi_1^2 + \dot \phi_2^2 + (2 - \phi_1^2 + 2\phi_1\phi_2 - \phi_2^2)\dot \phi_1 \dot \phi_2]$$

Thus $$\dot \phi_1 \dot \phi_2$$ is a second order so we omit it by setting it equal to 1, thus, $$\dot \phi_1 \dot \phi_2 = 1$$. One can see that this relates the two time derivatives. Then we can integrate with respect to time to find $$\phi_1$$ in terms of $$\phi_2$$ or $$\phi_2$$ in terms of $$\phi_1$$. Is this please correct?

Thanks!
 
ChiralSuperfields said:
Thus $$\dot \phi_1 \dot \phi_2$$ is a second order so we omit it by setting it equal to 1,
Absolutely not! You want to keep up to second order terms and you definitely cannot put them equal to one! The point was that it is already a second order term, meaning that any terms higher than the constant term in the expansion of the cosine will result in quartic terms or higher - which shoukd be ignored. Only the constant term in the cosine expansion contributes.
 
  • Like
  • Love
Likes MatinSAR and member 731016
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top