Double pendulum Lagrangian using small angle approximation formula

Click For Summary

Homework Help Overview

The discussion revolves around the Lagrangian formulation of a double pendulum, specifically using the small angle approximation. Participants are analyzing the implications of approximating trigonometric functions in the Lagrangian and how these approximations affect the terms involved in the equations of motion.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants explore the validity of removing certain terms from the Lagrangian based on their order in the small angle approximation. Questions arise regarding the treatment of terms involving both angles and their derivatives, particularly in relation to the cosine function's expansion.

Discussion Status

The discussion is ongoing, with participants providing insights and questioning each other's reasoning. Some guidance has been offered regarding the treatment of second-order terms and the implications of constants in the Lagrangian, but no consensus has been reached on the specific transformations and approximations being applied.

Contextual Notes

Participants are working under the constraints of a homework problem, which may impose specific requirements on the form of the Lagrangian and the approximations that can be used. There is also a focus on ensuring that the equations of motion remain valid despite the approximations made.

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this part (b) of this problem,
1717565864499.png

From (a), we know that
##\mathcal{L}\left(\phi_{1}, \phi_{2}, \dot{\phi}_{1}, \dot{\phi}_{2}\right)=\frac{1}{2} m \ell^{2}\left[2 \dot{\phi}_{1}^{2}+\dot{\phi}_{2}^{2}+2 \cos \left(\phi_{1}-\phi_{2}\right) \dot{\phi}_{1} \dot{\phi}_{2}\right]+m g \ell\left(2 \cos \phi_{1}+\cos \phi_{2}\right)##

And we want ##\mathcal{L}\left(\phi_{1}, \phi_{2}, \dot{\phi}_{1}, \dot{\phi}_{2}\right)=\frac{1}{2} m \ell^{2}\left[2 \dot{\phi}_{1}^{2}+\dot{\phi}_{2}^{2}+2 \dot{\phi}_{1} \dot{\phi}_{2}\right]-\frac{1}{2} m g \ell\left(2 \phi_{1}^{2}+\phi_{2}^{2}\right)##

We use the following formula for the small angle approximation of cosine

##\cos \phi_1 = 1 - \frac{\phi^2_1}{2}##

##\cos \phi_2 = 1 - \frac{\phi^2_2}{2}##

There imply that,

##\cos(\phi_1 - \phi_2) = 1 - \frac{(\phi_1 - \phi_2)^2}{2}##

##\cos(\phi_1 - \phi_2) = 1 - \frac{\phi_1^2 - 2\phi_1\phi_2 + \phi^2_2}{2}##

Thus, this proves that ##\cos(\phi_1 - \phi_2)## is a second order term to we must remove it from the expression.

However, why don't we remove ##\dot \phi_2 \dot \phi_1## instead?

This would mean ##\mathcal{L} = \frac{1}{2}ml^2(2\dot \phi_1^2 + \dot \phi_2^2 + 1 - \frac{\phi^2_1}{2} + \phi_1\phi_2 - \frac{\phi^2_2}{2}) - \frac{1}{2}mgl(2\phi^2_1 + \phi^2_2)##

I also have ao confusion about transfomring one of the other terms namely the ##mgl(2\cos\phi_1 + \cos \phi_2)##

I get ##mgl(3 - \phi_1^2 + \frac{\phi^2_2}{2})## instead of ##\frac{1}{2}mgl(2\phi_1^2 + \phi_2^2)##

This is from

##2\cos\phi_1 + \cos\phi_2 = 2[1 - \frac{\phi_1^2}{2}] + 1 - \frac{\phi_2^2}{2} = 3 - \phi_1^2 + \frac{\phi_2^2}{2}##

Does anybody please know what I have done wrong?

Thanks!
 
Physics news on Phys.org
ChiralSuperfields said:
Thus, this proves that ##\cos(\phi_1 - \phi_2)## is a second order term to we must remove it from the expression.

However, why don't we remove ##\dot \phi_2 \dot \phi_1## instead?
The complete term is ##\cos(\phi_1 - \phi_2)\dot \phi_2 \dot \phi_1##.
Expanding ##\cos(\phi_1 - \phi_2)## produces a second order term and a fourth order term.
 
  • Like
  • Love
Likes   Reactions: MatinSAR and member 731016
ChiralSuperfields said:
I also have ao confusion about transfomring one of the other terms namely the ##mgl(2\cos\phi_1 + \cos \phi_2)##

I get ##mgl(3 - \phi_1^2 + \frac{\phi^2_2}{2})## instead of ##\frac{1}{2}mgl(2\phi_1^2 + \phi_2^2)##
No, you should get ##mgl(3 - \phi_1^2 - \frac{\phi^2_2}{2})##, instead of ##-\frac{1}{2}mgl(2\phi_1^2 + \phi_2^2)##. The difference is a constant.
 
  • Like
  • Love
Likes   Reactions: MatinSAR and member 731016
haruspex said:
The difference is a constant.
… and at the risk of stating the obvious, a constant addition to the Lagrangian does not affect the equations of motion and can therefore be removed.

Also, to state #2 slightly different: You have a term on the form ##\dot \phi^2 g(\phi)##. The only second order term from such an expression comes from the zero order contribution of ##g(\phi)## as
$$
\dot \phi^2 g(\phi) = \dot \phi^2 [g(0) + \mathcal O(\phi)]
$$
(In this particular case ##\mathcal O(\phi^2)##)
 
  • Love
Likes   Reactions: member 731016
haruspex said:
No, you should get ##mgl(3 - \phi_1^2 - \frac{\phi^2_2}{2})##, instead of ##-\frac{1}{2}mgl(2\phi_1^2 + \phi_2^2)##. The difference is a constant.
Orodruin said:
… and at the risk of stating the obvious, a constant addition to the Lagrangian does not affect the equations of motion and can therefore be removed.

Also, to state #2 slightly different: You have a term on the form ##\dot \phi^2 g(\phi)##. The only second order term from such an expression comes from the zero order contribution of ##g(\phi)## as
$$
\dot \phi^2 g(\phi) = \dot \phi^2 [g(0) + \mathcal O(\phi)]
$$
(In this particular case ##\mathcal O(\phi^2)##)
Thank you for your replies @haruspex and @Orodruin!

We want $$\mathcal{L}\left(\phi_{1}, \phi_{2}, \dot{\phi}_{1}, \dot{\phi}_{2}\right)=\frac{1}{2} m \ell^{2}\left[2 \dot{\phi}_{1}^{2}+\dot{\phi}_{2}^{2}+2 \dot{\phi}_{1} \dot{\phi}_{2}\right]-\frac{1}{2} m g \ell\left(2 \phi_{1}^{2}+\phi_{2}^{2}\right)$$

Taking the first part of the Lagrangian and given that $$\cos(\phi_1 - \phi_2) = 1 - \frac{\phi_1^2 - 2\phi_1\phi_2 + \phi_2^2}{2}$$

We write that $$\frac{1}{2}ml^2[2\dot \phi_1^2 + \dot \phi_2^2 + 2\cos(\phi_1 - \phi_2)\dot \phi_1 \dot \phi_2]$$ term as $$\frac{1}{2}ml^2[2\dot \phi_1^2 + \dot \phi_2^2 + 2(1 - \frac{\phi_1^2 - 2\phi_1\phi_2 + \phi_2^2}{2})\dot \phi_1 \dot \phi_2]$$

Which is same as,

$$\frac{1}{2}ml^2[2\dot \phi_1^2 + \dot \phi_2^2 + (2 - \phi_1^2 + 2\phi_1\phi_2 - \phi_2^2)\dot \phi_1 \dot \phi_2]$$

Thus $$\dot \phi_1 \dot \phi_2$$ is a second order so we omit it by setting it equal to 1, thus, $$\dot \phi_1 \dot \phi_2 = 1$$. One can see that this relates the two time derivatives. Then we can integrate with respect to time to find $$\phi_1$$ in terms of $$\phi_2$$ or $$\phi_2$$ in terms of $$\phi_1$$. Is this please correct?

Thanks!
 
ChiralSuperfields said:
Thus $$\dot \phi_1 \dot \phi_2$$ is a second order so we omit it by setting it equal to 1,
Absolutely not! You want to keep up to second order terms and you definitely cannot put them equal to one! The point was that it is already a second order term, meaning that any terms higher than the constant term in the expansion of the cosine will result in quartic terms or higher - which shoukd be ignored. Only the constant term in the cosine expansion contributes.
 
  • Like
  • Love
Likes   Reactions: MatinSAR and member 731016

Similar threads

Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
926
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
15
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K