Double Sum Challenge: Equate the Limit

  • Context: MHB 
  • Thread starter Thread starter mathbalarka
  • Start date Start date
  • Tags Tags
    Challenge Sum
Click For Summary

Discussion Overview

The discussion revolves around evaluating the limit of a double sum involving the expression $$\lim_{n \to \infty} \frac1{n} \sum_{i = 1}^n \sum_{j = 1}^n \frac1{i + j}$$. Participants explore various approaches to this limit, indicating that it is a challenge that may involve both analytical and conceptual reasoning.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • One participant presents a method to evaluate the limit by transforming the double series into a single sum involving the number of pairs $(i, j)$ that sum to a constant $k$, leading to a proposed limit of 2.
  • Another participant challenges the correctness of the first participant's solution, suggesting that while the approach is on the right track, it contains errors that need to be addressed.
  • A subsequent post reiterates the original limit expression without providing additional insights or solutions, indicating a potential lack of consensus on the method of evaluation.
  • A later reply offers a correction to the initial solution, although the specifics of the correction are not detailed in the provided excerpts.

Areas of Agreement / Disagreement

Participants do not appear to reach a consensus on the correctness of the initial solution presented. There is disagreement regarding the validity of the proposed limit, with at least one participant asserting that the solution is incorrect.

Contextual Notes

The discussion highlights the complexity of evaluating the limit and the potential for multiple approaches, but does not resolve the mathematical steps or assumptions involved in the evaluation.

mathbalarka
Messages
452
Reaction score
0
Equate the limit

$$\lim_{n \to \infty} \frac1{n} \sum_{i = 1}^n \sum_{j = 1}^n \frac1{i + j}$$

Note : This was a challenge from a user in mathstackexchange. From a glance, there should be many ways to do it, so partly I posed this problem to see how the resident analysts in MHB handle it. (although if you think this is solely an analytic problem, you're mistaken ;))
 
Last edited:
Physics news on Phys.org
mathbalarka said:
Equate the limit

$$\lim_{n \to \infty} \frac1{n} \sum_{i = 1}^n \sum_{j = 1}^n \frac1{i + j}$$

[sp]The double series is equivalent to ...

$\displaystyle \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{i + j} = \sum_{k=2}^{2 n} \frac{a_{k}}{k}\ (1)$

... where $a_{k}$ is the number of pair of i and j such that i + j = k. It is easy to see that...

$\displaystyle a_{k} = k-1\ \text{if}\ k<2 n, = 1,\ \text{if}\ k=2 n\ (2)$

... so that...

$\displaystyle \lim_{n \rightarrow \infty} \frac{1}{n}\ \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{i + j} = \lim_{n \rightarrow \infty} \frac{1}{n}\ \{ \sum_{k=2}^{2n -1} \frac{k-1}{k} + \frac{1}{2 n} \} = \displaystyle \lim_{n \rightarrow \infty} \frac{2 n - 3}{n} + \frac{1}{2 n^{2}} - \frac{1}{n}\ \sum_{k=2}^{2 n-1} \frac{1}{k} = 2\ (3)$ [/sp]

Kind regards

$\chi$ $\sigma$
 
I am sorry, chisigma, but your solution is incorrect. You are on the right track, however. If you wish to check your solution and repost it, you're more than welcome.
 
mathbalarka said:
Equate the limit

$$\lim_{n \to \infty} \frac1{n} \sum_{i = 1}^n \sum_{j = 1}^n \frac1{i + j}$$

We have

$\displaystyle \lim_{n\to \infty} \frac{1}{n}\sum_{i = 1}^n \sum_{j = 1}^n \frac{1}{i + j}$

$\displaystyle = \lim_{n \to \infty} \frac{1}{n^2} \sum_{i = 1}^n \sum_{j = 1}^n \dfrac{1}{\frac{i}{n} + \frac{j}{n}}$

$\displaystyle = \int_0^1 \int_0^1 \frac{1}{x + y} \, dx\, dy$

$\displaystyle = \int_0^1 (\log(1 + y) - \log(y))\, dy$

$\displaystyle = \int_1^2 \log(y)\, dy - \int_0^1 \log(y)\, dy$

$\displaystyle = (y\log(y) - y)|_{y = 1}^2 - (y\log(y) - y)|_{y = 0}^1$

$\displaystyle = [(2 \log(2) - 2) - (\log(1) - 1)] - [(\log(1) - 1)]$

$\displaystyle = (2\log(2) - 1) + 1$

$\displaystyle = 2\log(2)$.
 
Here's a correction to chisigma's solution.

$$\sum_{i = 1}^n \sum_{j = 1}^n \frac1{i + j} = \sum_{k = 2}^{2n} \frac{c_{k, n}}{k}$$

Where $c_{k, n}$ is the number of partitions of $k$ in two parts, each of size at most $n$. chisigma's flaw in the proof was that he assumed $c_{k, n} = k - 1$, which is true if and only if $k \leq n$. For $k > n$, $c_{k, n} = 2n - k + 1$. Thus,

$$\begin{aligned} \sum_{k = 2}^{2n} \frac{c_{k, n}}{k} = \sum_{k = 2}^{n} \frac{k - 1}{k} + \sum_{k = n + 1}^{2n} \frac{2n - k + 1}{k} \, &= \textcolor{red}{\sum_{k = 2}^n 1} - \textcolor{green}{\sum_{k = 2}^n \frac1{k}} - \textcolor{goldenrod}{\sum_{k = n + 1}^{2n} 1} + \textcolor{blue}{\sum_{k = n+1}^{2n} \frac{2n + 1}{k}} \\ &= \textcolor{red}{(n - 1)} \, - \, \textcolor{green}{\left ( H_n - 1 \right )} \, - \, \textcolor{goldenrod}{n} \, + \, \textcolor{blue}{(2n + 1) \left ( H_{2n} - H_n\right )} \\ &= -H_n + (2n + 1)\left ( H_{2n} - H_n \right ) \end{aligned}$$

Using $H_n \sim \log(n)$ and that $\log(n) = o(n)$

$$\lim_{n \to \infty} \frac1n \sum_{i = 1}^n \sum_{j = 1}^n \frac1{i + j} = \lim_{n \to \infty} \frac{(2n+1)( H_{2n} - H_n ) - H_n}{n} = \lim_{n \to \infty} \left [ \left ( 2 + \frac1n \right) \log(2) - \frac{\log(n)}{n}\right ] = 2 \log(2)$$

What could possibly be a better way to puzzle an analyst than solving this problem number theoretically? :D
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K