MHB Drawing Complex Numbers on a Plane

Yankel
Messages
390
Reaction score
0
Hello all,

I wish to plot and following complex numbers on a plane, and to find out which shape will be created. I find it hard to figure out the first one, I believe that the others will follow more easily (the forth is also tricky).

\[z_{1}=\frac{2}{i-1}\]

\[z_{2}=-\bar{z_{1}}\]

\[z_{3}=\bar{z_{2}}\]

\[z_{4}=\frac{z_{3}}{i}\]

Thank you !
 
Physics news on Phys.org
"Rationalize the denominator": [math]\frac{2}{i- 1}= \frac{2}{i- 1}\frac{-i- 1}{-i- 1}= \frac{2(-i- 1)}{(-1)^2+ 1}= \frac{-2i- 2}{2}= -i+ 1[/math]
 
HallsofIvy said:
"Rationalize the denominator": [math]\frac{2}{i- 1}= \frac{2}{i- 1}\frac{-i- 1}{-i- 1}= \frac{2(-i- 1)}{(-1)^2+ 1}= \frac{-2i- 2}{2}= -i+ 1[/math]

you mean -1-i ?

thanks !
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
977
  • · Replies 8 ·
Replies
8
Views
3K