MHB Drawing Complex Numbers on a Plane

Click For Summary
The discussion focuses on plotting complex numbers on a plane, specifically the calculations for four complex numbers: z1, z2, z3, and z4. The first number, z1, is calculated as -i + 1 after rationalizing the denominator. The second number, z2, is the negative conjugate of z1, while z3 is the conjugate of z2. The fourth number, z4, involves dividing z3 by i. The participants clarify the calculations and seek to understand the resulting shapes formed by these complex numbers.
Yankel
Messages
390
Reaction score
0
Hello all,

I wish to plot and following complex numbers on a plane, and to find out which shape will be created. I find it hard to figure out the first one, I believe that the others will follow more easily (the forth is also tricky).

\[z_{1}=\frac{2}{i-1}\]

\[z_{2}=-\bar{z_{1}}\]

\[z_{3}=\bar{z_{2}}\]

\[z_{4}=\frac{z_{3}}{i}\]

Thank you !
 
Mathematics news on Phys.org
"Rationalize the denominator": [math]\frac{2}{i- 1}= \frac{2}{i- 1}\frac{-i- 1}{-i- 1}= \frac{2(-i- 1)}{(-1)^2+ 1}= \frac{-2i- 2}{2}= -i+ 1[/math]
 
HallsofIvy said:
"Rationalize the denominator": [math]\frac{2}{i- 1}= \frac{2}{i- 1}\frac{-i- 1}{-i- 1}= \frac{2(-i- 1)}{(-1)^2+ 1}= \frac{-2i- 2}{2}= -i+ 1[/math]

you mean -1-i ?

thanks !
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
953
  • · Replies 8 ·
Replies
8
Views
3K