Earnshaw's Theorem: Stability in Electrostatics?

  • Thread starter Thread starter kini.Amith
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
Earnshaw's theorem asserts that a charged particle cannot achieve stable equilibrium through electrostatic forces alone. The discussion explores a scenario where a positive charge is placed between two equal positive charges, questioning if this arrangement violates the theorem when the central charge is displaced axially. However, it is clarified that while the charge may return to equilibrium axially, it does not do so stably in all directions, particularly perpendicular displacements. The theorem applies to collections of charged particles rather than a single particle, indicating that a single charge can be in neutral equilibrium but not stable equilibrium. Thus, the scenario discussed does not contradict Earnshaw's theorem.
kini.Amith
Messages
83
Reaction score
1
In Electrodynamics text by Griffiths there is the statement of Earnshaw's theorem "a charged particle cannot be held in a stable equilibrium by electrostatic forces alone." But if we consider the system in which a positive charge is placed midway(where E is zero) between two positive charges of equal magnitude which are held in position by external forces. If the charge in the middle is displaced axially , then the electrostatic force will force it back into the equilibrium position.So isn't the charge in stable equilibrium. Isn't this a violation of Earnshaw's theorem?
 
Physics news on Phys.org
In order for the equilibrium to be stable, it must force back any small displacement from the equilibrium, in every direction, not just axially.
Consider what happens when you move the charge in a perpendicular direction to the axis.
 
kini.Amith said:
In Electrodynamics text by Griffiths there is the statement of Earnshaw's theorem "a charged particle cannot be held in a stable equilibrium by electrostatic forces alone." But if we consider the system in which a positive charge is placed midway(where E is zero) between two positive charges of equal magnitude which are held in position by external forces. If the charge in the middle is displaced axially , then the electrostatic force will force it back into the equilibrium position.So isn't the charge in stable equilibrium. Isn't this a violation of Earnshaw's theorem?
Collection of charged particles, not "a charged particle". See: http://en.wikipedia.org/wiki/Earnshaw%27s_theorem
 
zoki85 said:
Collection of charged particles, not "a charged particle". See: http://en.wikipedia.org/wiki/Earnshaw%27s_theorem
Is this true? i have seen the wikipedia page, but the text specifically says"a charged particle". Is it not valid for a single particle?
Boorglar said:
In order for the equilibrium to be stable, it must force back any small displacement from the equilibrium, in every direction, not just axially.
Consider what happens when you move the charge in a perpendicular direction to the axis.
I see. So it is valid only in three dimensions.Thanks
 
kini.Amith said:
Is this true? i have seen the wikipedia page, but the text specifically says"a charged particle". Is it not valid for a single particle?

I guess the reason for the caveat here may be that a single charged particle is clearly in equilibrium.
 
Nabeshin said:
I guess the reason for the caveat here may be that a single charged particle is clearly in equilibrium.
But not in a stable equilibrium as stated in the theorem, just in a neutral equilibrium.
 
Thread 'What is the pressure of trapped air inside this tube?'
As you can see from the picture, i have an uneven U-shaped tube, sealed at the short end. I fill the tube with water and i seal it. So the short side is filled with water and the long side ends up containg water and trapped air. Now the tube is sealed on both sides and i turn it in such a way that the traped air moves at the short side. Are my claims about pressure in senarios A & B correct? What is the pressure for all points in senario C? (My question is basically coming from watching...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
21
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 69 ·
3
Replies
69
Views
6K
  • · Replies 2 ·
Replies
2
Views
5K
Replies
9
Views
9K
  • · Replies 16 ·
Replies
16
Views
2K