roam
- 1,265
- 12
1. Find the eigenvalues and the eigenvectors corresponding to eigenvalues of the matrix
A = \left[\begin{array}{ccccc} 1 & 3 \\ 4 & 2 \end{array}\right]
3. The Attempt at a Solution
(\lambda I - A) = \lambda \left[\begin{array}{ccccc} 1 & 0 \\ 0 & 1 \end{array}\right] - \left[\begin{array}{ccccc} 1 & 3 \\ 4 & 2 \end{array}\right]
\left[\begin{array}{ccccc} \lambda - 1 & -3 \\ -4 & \lambda - 2 \end{array}\right] \left(\begin{array}{ccc}x\\y\end{ar ray}\right) = \left(\begin{array}{ccc}0\\0\end{ar ray}\right)
det(λI - A) = 0
=> (λ-1)(λ-2)-12 = 0
λ2-3λ-10=0
(λ+2)(λ-5) = 0
λ = -2, 5
My problem is how to find the eigenspaces corresponding to these eigenvalues.
We have two cases, the first one is when \lambda = 5. In this case we have the following:
\left[\begin{array}{ccccc} 4 & -3 \\ -4 & 3 \end{array}\right] \left(\begin{array}{ccc}x\\y\end{ar ray}\right) = \left(\begin{array}{ccc}0\\0\end{ar ray}\right)
So to find the eigenvectors corresponding to \lambda = 5, I think I should solve the system
\left[\begin{array}{ccccc} 4 & -3 \\ -4 & 3 \end{array}\right]
4x-3y = 0 ...(1)
-4x+3y = 0 ...(2)
How can I solve this? I'm not sure how this is done (if I minus (1) from (2) to eliminate x then the y would be eliminated as well).
Thanks.
Roam
A = \left[\begin{array}{ccccc} 1 & 3 \\ 4 & 2 \end{array}\right]
3. The Attempt at a Solution
(\lambda I - A) = \lambda \left[\begin{array}{ccccc} 1 & 0 \\ 0 & 1 \end{array}\right] - \left[\begin{array}{ccccc} 1 & 3 \\ 4 & 2 \end{array}\right]
\left[\begin{array}{ccccc} \lambda - 1 & -3 \\ -4 & \lambda - 2 \end{array}\right] \left(\begin{array}{ccc}x\\y\end{ar ray}\right) = \left(\begin{array}{ccc}0\\0\end{ar ray}\right)
det(λI - A) = 0
=> (λ-1)(λ-2)-12 = 0
λ2-3λ-10=0
(λ+2)(λ-5) = 0
λ = -2, 5
My problem is how to find the eigenspaces corresponding to these eigenvalues.
We have two cases, the first one is when \lambda = 5. In this case we have the following:
\left[\begin{array}{ccccc} 4 & -3 \\ -4 & 3 \end{array}\right] \left(\begin{array}{ccc}x\\y\end{ar ray}\right) = \left(\begin{array}{ccc}0\\0\end{ar ray}\right)
So to find the eigenvectors corresponding to \lambda = 5, I think I should solve the system
\left[\begin{array}{ccccc} 4 & -3 \\ -4 & 3 \end{array}\right]
4x-3y = 0 ...(1)
-4x+3y = 0 ...(2)
How can I solve this? I'm not sure how this is done (if I minus (1) from (2) to eliminate x then the y would be eliminated as well).
Thanks.
Roam